(2007•濰坊)如圖,國旗上的五角星的五個角的度數(shù)是相同的,每一個角的度數(shù)都是( )

A.30°
B.35°
C.36°
D.42°
【答案】分析:如圖所示,△ABF中,根據(jù)內(nèi)角和外角的關(guān)系,∠2=∠A+∠B;△EDG中,∠1=∠D+∠E;根據(jù)三角形內(nèi)角和等于180°,得到∠1+∠2+∠C=180度.于是∠A+∠B+∠C+∠D+∠E=180°,由于五個角的度數(shù)是相同,即可求得每一個角的度數(shù).
解答:解:∵∠2=∠A+∠B;∠1=∠D+∠E,
∠1+∠2+∠C=180°,
∴∠A+∠B+∠C+∠D+∠E=180°,
∵五個角的度數(shù)是相同,則每一個角的度數(shù)都是180°÷5=36°.
故選C.
點評:此題結(jié)合生活實際,有利于激發(fā)學生的探究意識.題目巧妙結(jié)合了三角形內(nèi)角和外角的關(guān)系,將所有角轉(zhuǎn)化到一個三角形內(nèi),體現(xiàn)了數(shù)形結(jié)合思想和轉(zhuǎn)化思想在解決數(shù)學問題時的魅力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(40)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學中考數(shù)學一模試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(35)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案