(2001•湖州)如圖,已知E是平行四邊形ABCD的邊BC上的一點,F(xiàn)是BC延長線上一點,且BE=CF,BD與AE相交于點G.
求證:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

【答案】分析:1、由平行四邊形的性質(zhì)知,AB=CD,∠ABE=∠FCD,又有BE=CF,故要由SAS得到△ABE≌△DCF,
2、由△ABE≌△DCF,可得∠AEB=∠F?AE∥DF?△BGE△BDF?BE:BF=GE:DF?BE•DF=GE•BF.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠ABE=∠FCD,
又∵BE=CF,
∴△ABE≌△DCF.

(2)∵△ABE≌△DCF,
∴∠AEB=∠F.
∴AE∥DF.
∴△BGE∽△BDF.
∴BE:BF=GE:DF,即:BE•DF=GE•BF.
點評:本題利用了平行四邊形的性質(zhì),全等三角形和相似三角形的判定和性質(zhì),平行線的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2001•湖州)如圖,在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=2,CD=1,設(shè)∠CAD=α.
(1)試寫出α的四個三角函數(shù)值;
(2)若∠B=α,求BD的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•湖州)如圖,已知E是平行四邊形ABCD的邊BC上的一點,F(xiàn)是BC延長線上一點,且BE=CF,BD與AE相交于點G.
求證:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•湖州)如圖,已知E是平行四邊形ABCD的邊BC上的一點,F(xiàn)是BC延長線上一點,且BE=CF,BD與AE相交于點G.
求證:(1)△ABE≌△DCF;
(2)BE•DF=BF•GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•湖州)如圖,在Rt△ABC中,∠C=90°,D是BC邊上一點,AC=2,CD=1,設(shè)∠CAD=α.
(1)試寫出α的四個三角函數(shù)值;
(2)若∠B=α,求BD的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•湖州)如圖,已知ABCD是圓的內(nèi)接四邊形,對角線AC和BD相交于E,BC=CD=4,AE=6,如果線段BE和DE的長都是整數(shù),則BD的長等于   

查看答案和解析>>

同步練習冊答案