已知,如圖所示,正方形ABCD,E、M、F、N分別是AD、AB、BC、CD上的點,若EF⊥MN,求證:EF=MN.
                

通過四邊形 EFGD 為平行四邊形得MN=EF

解析試題分析:作 DG∥EF 交 BC 于 G ,作CH∥MN 交 AB 于 H.   
∵ CH∥MN , DG∥EF , FE ⊥ MN
∴ CH ⊥ DG ,又∵ DC ⊥ BC
∴∠BCH=∠CDG ,∵ BC="CD" ,∠ HBC=∠GCD
∴△DCG 按順時針旋轉(zhuǎn) 90°后再向左平移 .
BC 的長可與△ CBH 重合 .
∴ CH="DG" ,又∵ AD∥BC,DG∥EF
∴四邊形 EFGD 為平行四邊形,∴ EF="DG" ,
同理 CH="MN" ,∴ MN=EF
考點:平行四邊形
點評:本題考查平行四邊形的判定,掌握平行四邊形的判定方法,會判斷一個四邊形是平行四邊形

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,直線l的解析式為y=
34
x-3,并且與x軸、y軸分別相交于點A、B.
(1)求A、B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/每秒的速度向x軸正方向運動,問什么時刻該圓與直線l相切;
(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以0精英家教網(wǎng).5個單位/秒的速度運動,問在整個運動的過程中,點P在動圓的園面(圓上和圓的內(nèi)部)上一共運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,直線l的解析式為y=
34
x-3
,并且與x軸、y軸分別交于點A、B.
(1)求A、B兩點的坐標;
(2)半徑為0.75的⊙O1,以0.4個單位/秒的速度從原點向x軸正方向運動,問在什么時刻與直線l相切;
(3)在第(2)題的條件下,在⊙O1運動的同時,與之大小相同的⊙O2從點B出發(fā),沿BA方向運動,兩圓經(jīng)過的區(qū)域重疊部分是什么形狀的圖形?并求出其面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇省無錫市惠山六校聯(lián)考九年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知:如圖所示,直線l的解析式為,并且與x軸、y軸分別交于點A、B.

(1)求A、B兩點的坐標;

(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/秒的速度向x軸正方向運動,問在什么時刻與直線l相切;

(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿射線BA方向以0.5個單位/秒的速度運動,設(shè)t秒時點P到動圓圓心的距離為s,求s與t的關(guān)系式;

(4)問在整個運動過程中,點P在動圓的圓面(圓上和圓內(nèi)部)上,一共運動了多長時間?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省蘇州市新區(qū)一中九年級(上)月考數(shù)學試卷(12月份)(解析版) 題型:解答題

已知:如圖所示,直線l的解析式為y=x-3,并且與x軸、y軸分別相交于點A、B.
(1)求A、B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/每秒的速度向x軸正方向運動,問什么時刻該圓與直線l相切;
(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以0.5個單位/秒的速度運動,問在整個運動的過程中,點P在動圓的園面(圓上和圓的內(nèi)部)上一共運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源:《24.2 與圓有關(guān)的位置關(guān)系》2010年同步測試(解析版) 題型:解答題

已知:如圖所示,直線l的解析式為y=x-3,并且與x軸、y軸分別相交于點A、B.
(1)求A、B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/每秒的速度向x軸正方向運動,問什么時刻該圓與直線l相切;
(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以0.5個單位/秒的速度運動,問在整個運動的過程中,點P在動圓的園面(圓上和圓的內(nèi)部)上一共運動了多長時間?

查看答案和解析>>

同步練習冊答案