如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC、BC,A、C兩點(diǎn)的坐標(biāo)分別為A(-3,0)、C(0,
3
),且當(dāng)x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時從B點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,二次函數(shù)圖象的對稱軸上是否存在點(diǎn)Q,使得以B,N精英家教網(wǎng),Q為項(xiàng)點(diǎn)的三角形與△ABC相似?如果存在,請求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.
分析:(1)由題意和圖形可求出函數(shù)的表達(dá)式;
(2)結(jié)合拋物線內(nèi)部幾何關(guān)系和性質(zhì)求出t值及P點(diǎn)坐標(biāo);
(3)假設(shè)成立(1)若有△ACB∽△QNB則有∠ABC=∠QBN,尋找相似條件,判斷是否滿足.
解答:精英家教網(wǎng)解:(1)∵C(0,
3
)在拋物線上
∴代入得c=
3

∵x=-4和x=2時二次函數(shù)的函數(shù)值y相等,
∴頂點(diǎn)橫坐標(biāo)x=
-4+2
2
=-1,
-
b
2a
=-1
,
又∵A(-3,0)在拋物線上,
9a-3b+
3
=0
由以上二式得a=-
3
3
,b=-
2
3
3
,c=
3


(2)由(1)y=-
3
3
x2
-
2
3
3
x+
3
=-
3
3
(x-1)(x+3)

∴B(1,0),
連接BP交MN于點(diǎn)O1,根據(jù)折疊的性質(zhì)可得:01也為PB中點(diǎn).
設(shè)t秒后有M(1-t,0),N(1-
t
2
,
3
2
t
),O1(1-
3
4
t,
3
4
t)

設(shè)P(x,y),B(1,0)
∵O1為P、B的中點(diǎn)可得1-
3t
4
=
1+x
2
,
3
4
t=
y
2
,即P(1-
3t
2
,
3
2
t

∵A,C點(diǎn)坐標(biāo)知lAC:y=
3
3
x+
3
,P點(diǎn)也在直線AC上代入得t=
4
3
,
即P(-1,
2
3
3
);

(3)假設(shè)成立;
①若有△ACB∽△QNB,則有∠ABC=∠QBN,
∴Q點(diǎn)在x軸上,AC∥QN但由題中A,C,Q,N坐標(biāo)知直線的一次項(xiàng)系數(shù)為:KAC=
3
3
KQN

則△ACB不與△QNB相似.
②若有△ACB∽△QBN,則有
CB
BN
=
AB
QN
…(1)
設(shè)Q(-1,y),C(0,
3
),A(-3,0),B(1,0),N(
1
3
2
3
3

則CB=2,AB=4,AC=2
3

代入(1)得
2
4
3
=
4
(
4
3
)
2
+(y-
2
3
3
)
2

y=2
3
-
2
3
3

當(dāng)y=2
3
時有Q(-1,2
3
)則QB=4?
AC
QB
=
3
2
CB
BN
不滿足相似舍去;
當(dāng)y=-
2
3
3
時有Q(-1,-
2
3
3
)則QB=
4
3
3
?
AC
QB
=
3
2
=
CB
BN

∴存在點(diǎn)Q(-1,-
2
3
3
)使△ACB∽△QBN.
綜上可得:(-1,-
2
3
3
).
點(diǎn)評:此題是二次函數(shù)綜合題,主要考函數(shù)的性質(zhì)和坐標(biāo),幾何變換與三角形相似的性質(zhì),探究一些存在性問題,難度較大,靈活運(yùn)用函數(shù)性質(zhì)來解題,考查知識點(diǎn)全面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達(dá)30萬元;
(3)從第幾個月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時,ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時,ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習(xí)冊答案