高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
作業(yè)寶

解:(1)

(2)由于BF=DB=2(米),即∠D=45°,
所以,DP=OP=燈高,
△COP中AE⊥CP,OP⊥CP,
∴AE∥OP
∴△CEA∽△COP,即,
設(shè)AP=x,OP=h則:
①,
DP=OP表達(dá)為2+4+x=h②,
聯(lián)立①②兩式得:
x=4,h=10,
∴路燈有10米高.
分析:(1)連接DF并延長與CE的延長線交與一點即可得到路燈的位置;
(2)先根據(jù)竹竿和影長之間的數(shù)量關(guān)系求得∠D=45°,∠POC=30°,找到DC與燈高之間的數(shù)量關(guān)系CD=OP,根據(jù)線段之間是和差關(guān)系得到DC=DB+BA-CA,代入對應(yīng)數(shù)據(jù)即可求出CD長為5米,從而求出燈高.
點評:有關(guān)中心投影的題目,可利用直角三角形和相似三角形的性質(zhì)求解.本題中主要是利用了含特殊角30度,45度的直角三角形的特殊性質(zhì)來求得相關(guān)線段之間的數(shù)量關(guān)系來求燈高.要知道含45度角的直角三角形的兩條直角邊相等,含30度角的直角三角形的短直角邊等于斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案