【題目】如圖,長(zhǎng)方形的長(zhǎng)為15,寬為10,高為20,點(diǎn)離點(diǎn)的距離為5,螞蟻如果要沿著長(zhǎng)方形的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是(

A.35B.C.25D.

【答案】C

【解析】

要求長(zhǎng)方體中兩點(diǎn)之間的最短路徑,最直接的作法,就是將長(zhǎng)方體側(cè)面展開,然后利用兩點(diǎn)之間線段最短解答.

解:只要把長(zhǎng)方體的右側(cè)表面剪開與前面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第1個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根據(jù)勾股定理得:
AB=,

只要把長(zhǎng)方體的右側(cè)表面剪開與上面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第2個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5
BD=CD+BC=20+5=25,AD=10

在直角三角形ABD中,根據(jù)勾股定理得:
AB=

只要把長(zhǎng)方體的上表面剪開與后面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第3個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
AC=CD+AD=20+10=30;

在直角三角形ABC中,根據(jù)勾股定理得:
AB=,

25,

∴螞蟻爬行的最短距離是25,
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并解決問題:

1)如圖①等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)AB、C的距離分別為3,4,5,求∠APB的度數(shù).

為了解決本題,我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP處,此時(shí)△ACP≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB__________;

2)基本運(yùn)用

請(qǐng)你利用第(1)題的解答思想方法,解答下面問題:

已知如圖②,△ABC中,∠CAB90°,ABAC,E、FBC上的點(diǎn)且∠EAF45°,求證:EF2BE2+FC2

3)能力提升

如圖③,在RtABC中,∠C90°,AC1,∠ABC30°,點(diǎn)ORtABC內(nèi)一點(diǎn),連接AO,BO,CO,且∠AOC=∠COB=∠BOA120°,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.

求證:(1)∠ECD=∠EDC;

(2)OC=OD;

(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用16張不同的直角三角形紙片拼成一個(gè)海螺的圖形,直角的位置、長(zhǎng)為1的線段均已標(biāo)出,則與這海螺圖形周長(zhǎng)最接近的整數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如圖的方式放置。點(diǎn)A1,A2,A3,……和點(diǎn)C1,C2,C3……分別在直線y=x +1x軸上,則點(diǎn)A6的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形 ABCD 中,AB1,BC,點(diǎn) M AC 上,且 AMAC,連接并延長(zhǎng) BM AD 于點(diǎn) N

(1)求證:ABC∽△AMB;

(2)求 MN 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DOAB于點(diǎn)O,連接DA交⊙O于點(diǎn)C,過點(diǎn)C作⊙O的切線交DO于點(diǎn)E,連接BCDO于點(diǎn)F.

(1)求證:CE=EF;

(2)連接AF并延長(zhǎng),交⊙O于點(diǎn)G.填空:

①當(dāng)∠D的度數(shù)為   時(shí),四邊形ECFG為菱形;

②當(dāng)∠D的度數(shù)為   時(shí),四邊形ECOG為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案