【題目】在△ABC中,∠ABC=90°
(1)如圖1,分別過(guò)A、C兩點(diǎn)作經(jīng)過(guò)點(diǎn)B的直線的垂線,垂足分別為點(diǎn)M,N,求證:△ABM∽△BCN;
(2)如圖2,P是BC邊上一點(diǎn),∠BAP=∠C,tan∠PAC=,BP=2cm,求CP的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)8.
【解析】
(1)利用相似三角形的判定易證△ABM∽△BCN;
(2)過(guò)P作PM⊥AP,交AC于M,過(guò)M作MN⊥PC于N,先證△PMN∽△ABP,求出PN與AB的比,設(shè)PN=2t,則AB=t,推出CN=PN=2t,再證△ABP∽△CBA,利用相似三角形對(duì)應(yīng)邊的比相等即可求出t的值,進(jìn)一步求出CP的值.
(1)證明:∵AM⊥MN,CN⊥MN,
∴∠M=∠N=90°
∴∠MAB+∠ABM=90°,
∵∠ABC=90°,
∴∠ABM+∠CBN=90°,
∴∠MAB=∠CBN,
∴△ABM∽△BCN;
(2)解:如圖2,過(guò)P作PM⊥AP,交AC于M,過(guò)M作MN⊥PC于N,
則∠APB+∠MPN=90°,∠APB+∠BAP=90°,
∴∠MPN=∠BAP,
又∵∠B=∠N=90°,
∴△PMN∽△ABP,
∴,
設(shè)PN=2t,則AB=t,
∵∠BAP=∠MPN,∠BAP=∠C,
∴∠MPC=∠C,
∴CN=PN=2t,
∵∠B=∠B=90°,∠BAP=∠C,
∴△ABP∽△CBA,
∴,
∴(t)2=2×(2+4t),
解得,x1=2,x2=(舍去),
∴PC=CN+PN=4t=4×2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,橫坐標(biāo)為2的點(diǎn)A在反比例函數(shù)y(k>0)的圖象上,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,.
(1)求k的值;
(2)在x軸的負(fù)半軸上找點(diǎn)P,將點(diǎn)A繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,其對(duì)應(yīng)點(diǎn)A落在此反比例函數(shù)第三象限的圖象上,求點(diǎn)P的坐標(biāo);
(3)直線yx+n(n<0)與AB的延長(zhǎng)線交于點(diǎn)C,與反比例函數(shù)圖象交于點(diǎn)E,若點(diǎn)E到直線AB的距離等于AC,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點(diǎn)E在AB上,AC與DE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速鐵路位于某省南部,是國(guó)家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟(jì)寧、菏澤,與鄭徐客運(yùn)專(zhuān)線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個(gè)高鐵維護(hù)站,如圖①,現(xiàn)在想過(guò)B處在河上修一座橋,需要知道河寬,一測(cè)量員在河對(duì)岸的A處測(cè)得B在它的東北方向,測(cè)量員從A點(diǎn)開(kāi)始沿岸邊向正東方向前進(jìn)300米到達(dá)點(diǎn)C處,測(cè)得B在C的北偏西30度方向上.
(1)求所測(cè)之處河的寬度;(結(jié)果保留的十分位)
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量河寬的方案,并在圖②中畫(huà)出圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC的斜邊AB在平面直角坐標(biāo)系的x軸上,點(diǎn)C(1,3)在反比例函數(shù)y=的圖象上,且sin∠BAC=,則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G點(diǎn).
(1)則線段CG、PM、PN三者之間的數(shù)量關(guān)系是 ;
(2)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則線段CG、PM、PN三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且AE=AD,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,若正方形ABCD的面積是12,請(qǐng)直接寫(xiě)出PM+PN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)在邊上,且,點(diǎn)為的中點(diǎn),點(diǎn)為邊上的動(dòng)點(diǎn),當(dāng)點(diǎn)在上移動(dòng)時(shí),使四邊形周長(zhǎng)最小的點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱(chēng)軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com