【題目】如圖1,,,AD、BE相交于點(diǎn)M,連接CM
求證:;
的度數(shù)用含的式子表示
如圖2,當(dāng)時(shí),點(diǎn)PQ分別為AD、BE的中點(diǎn),分別連接CPCQ、PQ,判斷的形狀,并加以證明.

【答案】(1)見(jiàn)解析;(2);(3)為等腰直角三角形,證明見(jiàn)解析.

【解析】

分析(1)由CA=CB,CD=CE,ACB=DCE=α,利用SAS即可判定ACD≌△BCE;

(2)根據(jù)ACD≌△BCE,得出∠CAD=CBE,再根據(jù)∠AFC=BFH,即可得到∠AMB=ACB=α;

(3)先根據(jù)SAS判定ACP≌△BCQ,再根據(jù)全等三角形的性質(zhì),得出CP=CQ,ACP=BCQ,最后根據(jù)∠ACB=90°即可得到∠PCQ=90°,進(jìn)而得到PCQ為等腰直角三角形.

如圖1,

,

,

中,

,

如圖1,

,

,

中,,

,

中,;

為等腰直角三角形.

證明:如圖2,由可得,

,BE的中點(diǎn)分別為點(diǎn)P、Q

,

,

中,

,

,且

,

,

,

為等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以為腰作等腰直角,使,連接

1)觀察猜想

如圖1,當(dāng)點(diǎn)在線段上時(shí),

的位置關(guān)系為__________;

之間的數(shù)量關(guān)系為___________(提示:可證

2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),(1)中的①、②結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;

3)拓展延伸

如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線時(shí),將沿線段翻折,使點(diǎn)與點(diǎn)重合,連接,若,請(qǐng)直接寫(xiě)出線段的長(zhǎng).(提示:做,做

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為創(chuàng)建“書(shū)香校園”,購(gòu)置了一批圖書(shū),已知購(gòu)買(mǎi)科普類(lèi)圖書(shū)花費(fèi)10000元,購(gòu)買(mǎi)文學(xué)類(lèi)圖書(shū)花費(fèi)9000元,其中科普類(lèi)圖書(shū)平均每本的價(jià)格比文學(xué)類(lèi)圖書(shū)平均每本的價(jià)格貴5元,且購(gòu)買(mǎi)科普類(lèi)圖書(shū)的數(shù)量與購(gòu)買(mǎi)文學(xué)類(lèi)圖書(shū)的數(shù)量相等.求科普類(lèi)圖書(shū)平均每本的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)學(xué)生開(kāi)展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100個(gè))為優(yōu)秀.下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)):

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

總成績(jī)

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班總成績(jī)相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問(wèn)題:

1)計(jì)算兩班的優(yōu)秀率;

2)求兩班比賽數(shù)據(jù)的中位數(shù);

3)求兩班比賽數(shù)據(jù)的方差;

4)根據(jù)以上三條信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期江蘇省各地均發(fā)布“霧霾”黃色預(yù)警,我市某口罩廠商生產(chǎn)一種新型口罩產(chǎn)品,每件制造成本為18元,試銷(xiāo)過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系滿足下表.

銷(xiāo)售單價(jià)x(元/件)

20

25

30

40

每月銷(xiāo)售量y(萬(wàn)件)

60

50

40

20

(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個(gè)模型中確定哪種函數(shù)能比較恰當(dāng)?shù)乇硎緔與x的變化規(guī)律,并直接寫(xiě)出y與x之間的函數(shù)關(guān)系式為__________;

(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)為440萬(wàn)元?

(3)如果廠商每月的制造成本不超過(guò)540萬(wàn)元,那么當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個(gè)問(wèn)題:今有邑方二百步,各中開(kāi)門(mén),出東門(mén)十五步有木,問(wèn):出南門(mén)幾步而見(jiàn)木?

用今天的話說(shuō),大意是:如圖,是一座邊長(zhǎng)為200步(是古代的長(zhǎng)度單位)的正方形小城,東門(mén)位于的中點(diǎn),南門(mén)位于的中點(diǎn),出東門(mén)15步的處有一樹(shù)木,求出南門(mén)多少步恰好看到位于處的樹(shù)木(即點(diǎn)在直線上)?請(qǐng)你計(jì)算的長(zhǎng)為__________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.

請(qǐng)?zhí)羁胀瓿上铝凶C明.

證明:如圖,作Rt△ABC的斜邊上的中線CD,

CD=AB=AD (   ).

∵AC=AB,

∴AC=CD=AD △ACD是等邊三角形.

∴∠A=   °.

∴∠B=90°﹣∠A=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,將兩個(gè)完全相同的三角形紙片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如圖2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落 AB 邊上時(shí),

①填空:線段 DE AC 的位置關(guān)系是 ;

②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2

2)當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),小明猜想(1 S1 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBC、CE 邊上的高,請(qǐng)你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=﹣x+1與拋物線y=x2+bx+c交于A(0,1),B兩點(diǎn),B點(diǎn)縱坐標(biāo)為10,拋物線的頂點(diǎn)為C.

(1)求b,c的值;

(2)判斷ABC的形狀并說(shuō)明理由;

(3)點(diǎn)D、E分別為線段AB、BC上任意一點(diǎn),連接CD,取CD的中點(diǎn)F,連接AF,EF.當(dāng)四邊形ADEF為平行四邊形時(shí),求平行四邊形ADEF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案