17、把下列各式分解因式:
(1)a4+64b4
(2)x4+x2y2+y4
(3)x2+(1+x)2+(x+x22;
(4)(c-a)2-4(b-c)(a-b);
(5)x3-9x+8;
(6)x3+2x2-5x-6
分析:(1)先對所給多項式進行變形,a4+64b4=a4+64b4+16a2b2-16a2b2,前三項是完全平方式,然后先套用公式a2±2ab+b2=(a±b)2進行變形,再套用公式a2-b2=(a+b)(a-b),進一步分解因式.
(2)先對所給多項式進行變形,x4+x2y2+y4=x4+2x2y2+y4-x2y2,然后先套用公式a2±2ab+b2=(a±b)2進行變形,再套用公式a2-b2=(a+b)(a-b),進一步分解因式.
(3)先對所給多項式進行變形,x2+(1+x)2+(x+x22=1+2(x+x2)+(x+x22,將x+x2看作一個整體,套用公式a2±2ab+b2=(a±b)2進行進一步因式分解即可.
(4)設b-c=x,a-b=y,則c-a=-(x+y),則原式變?yōu)椋海╟-a)2-4(b-c)(a-b)=[-(x+y)]2-4xy,再進一步變形分解因式即可.
(5)應用拆項法,將原式變形為:x3-9x+8=x3-x-8x+8,然后分組分解.
(6)先將原式變形,x3+2x2-5x-6=x3+x2+x2+x-6x-6,然后分組分解.
解答:解:(1)a4+64b4
=a4+64b4+16a2b2-16a2b2
=(a2+8b22-(4ab)2
=(a2+8b2-4ab)(a2+8b2+4ab);
(2)x4+x2y2+y4;
=x4+2x2y2+y4-x2y2
=(x2+y22-(xy)2
=(x2+y2-xy)(x2+y2+xy);
(3)x2+(1+x)2+(x+x22
=1+2(x+x2)+(x+x22
=(1+x+x22
(4)設b-c=x,a-b=y,則c-a=-(x+y),
則(c-a)2-4(b-c)(a-b)
=[-(x+y)]2-4xy,
=(x-y)2,
所以(c-a)2-4(b-c)(a-b)
=(b-c-a+b)2
=(2b-a-c)2;
(5)x3-9x+8;
=x3-x-8x+8
=(x3-x)-(8x-8)
=x(x2-1)-8(x-1)
=x(x+1)(x-1)-8(x-1)
=(x-1)(x2+x-8);
(6)x3+2x2-5x-6
=x3+x2+x2+x-6x-6,
=(x3+x2)+(x2+x)-(6x+6)
=x2(x+1)+x(x+1)-6(x+1)
=(x+1)(x2-x-6)
=(x+1)(x+3)(x-2).
點評:本題綜合考查了因式分解的方法,解題的關鍵是適當添項、拆項,然后運用公式進行進一步分解因式,注意分解要徹底.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式:
(1)x3-x;              
(2)a3-2a2b+ab2;    
(3)3a2b-6ab2;
(4)-6a3+15ab2-9ac2
(5)a(x-y)-x+y;    
(6)x2+4y2-4xy;
(7)x2(a-b)+4(b-a);     
(8)(x2+4)2-16x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式.
(1)a3-a
(2)3x4-12x2
(3)9(x-y)2-4(x+y)2
(4)a2-49b2
(5)16x2y2z2-9
(6)x2y2-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式.
(1)a2-1=
(a+1)(a-1)
(a+1)(a-1)

(2)a4-1=
(a2+1)(a+1)(a-1)
(a2+1)(a+1)(a-1)

(3)x2-2xy+y2=
(x-y)2
(x-y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式:
(1)x6-81x2y4         
(2)2x2-x-3        
(3)x2-7x-8  (4)a3-2a2+a     
(5)a2+6a+5     (6)7x2+13x-2
(7)-x2+4x+5       (8)-3x2+10x+8    
(9)x3z-4x2yz+4xy2z (10)x3z-4x2yz+4xy2z              
(11)x4+6x2+9  (12)(x-1)2-4(x-1)y+4y2           
(13)(x2-10)(x2+5)+54 (14)(a-b)(x-y)-(b-a)(x+y)       
(15)4m5+8m3n2+4mn4 (16)4a2+4ab+b2-1            
(17)x3-x2-2x+2.

查看答案和解析>>

同步練習冊答案