【題目】如圖,中,,,,若動點(diǎn)P從點(diǎn)C開始,按的路徑運(yùn)動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
出發(fā)2秒后,求的面積;
當(dāng)t為幾秒時,BP平分;
問t為何值時,為等腰三角形?
【答案】(1)18;(2)當(dāng)秒時,BP平分;(3)或13s或12s或時為等腰三角形.
【解析】
(1)利用勾股定理得出AC=8cm,進(jìn)而表示出AP的長,進(jìn)而得出答案;
(2)過點(diǎn)P作PD⊥AB于點(diǎn)D,由HL證明Rt△BPD≌Rt△BPC,得出BD=BC=6cm,因此AD=10﹣6=4cm,設(shè)PC=x cm,則PA=(8﹣x)cm,由勾股定理得出方程,解方程即可;
(3)利用分類討論的思想和等腰三角形的特點(diǎn)及三角形的面積求出答案.
(1)如圖1.
∵∠C=90°,AB=10cm,BC=6cm,∴AC=8cm,根據(jù)題意可得:PC=2cm,則AP=6cm,故△ABP的面積為:×AP×BC=×6×6=18(cm2);
(2)如圖2所示,過點(diǎn)P作PD⊥AB于點(diǎn)D.
∵BP平分∠CBA,∴PD=PC.
在Rt△BPD與Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.
設(shè)PC=x cm,則PA=(8﹣x)cm
在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴當(dāng)t=3秒時,BP平分∠CBA;
(3)如圖3,若P在邊AC上時,BC=CP=6cm,此時用的時間為6s,△BCP為等腰三角形;
若P在AB邊上時,有3種情況:
①如圖4,若使BP=CB=6cm,此時AP=4cm,P運(yùn)動的路程為12cm,所以用的時間為12s,故t=12s時△BCP為等腰三角形;
②如圖5,若CP=BC=6cm,過C作斜邊AB的高,根據(jù)面積法求得高為4.8cm,根據(jù)勾股定理求得BP=7.2cm,所以P運(yùn)動的路程為18﹣7.2=10.8cm,∴t的時間為10.8s,△BCP為等腰三角形;
③如圖
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC,∴PA=PB=5cm
∴P的路程為13cm,所以時間為13s時,△BCP為等腰三角形.
綜上所述:當(dāng)t=6s或13s或12s或 10.8s 時△BCP為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動,點(diǎn)B在直線MN上運(yùn)動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大小.
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦,過點(diǎn)C作CD⊥AB于點(diǎn)D,將△ACD沿AC翻折,點(diǎn)D落在點(diǎn)E處,AE交⊙O于點(diǎn)F,連接OC、FC.
(1)求證:CE是⊙O的切線.
(2)若FC∥AB,求證:四邊形AOCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝著5個完全相同的小球,分別標(biāo)有數(shù)字0,1,,2,-1,-2,從袋中隨機(jī)取出一個小球。
(1)隨機(jī)地從布袋中摸出一個小球,則摸出的球上數(shù)字為正數(shù)的概率為
(2)若第一次從布袋中隨機(jī)摸出一個小球,設(shè)記下的數(shù)字為x,再將此球放回盒中,第二次再從布袋中隨機(jī)抽取一張,設(shè)記下的數(shù)字為y,記M(x,y),請用畫樹狀圖或列表法列舉出點(diǎn)M所有可能的坐標(biāo),并求點(diǎn)M位于第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒,當(dāng)t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.
(2)已知:,其中是整數(shù),且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】證明:兩條平行線被第三條直線所截,一組同位角的平分線互相平行.
已知:如圖,_______________________.
求證:_____________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為3萬元,可變成本逐年增長,已知該養(yǎng)殖戶第1年的可變成本為2.4萬元,設(shè)可變成本平均每年增長的百分率為x.
(1)用含x的代數(shù)式表示第3年的可變成本為萬元.
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為6.456萬元,求可變成本平均每年增長的百分率?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形紙片ABCD的長AD=9cm,寬AB=3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.
求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com