如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數(shù)y=數(shù)學公式在第一象限的圖象經過點D.
(1)求D點的坐標,以及反比例函數(shù)的解析式;
(2)若K是雙曲線上第一象限內的任意點,連接AK、BK,設四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應的K點橫坐標;并直接寫出S的取值范圍.
(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應點恰好落在雙曲線上的方法.

解:(1)過D作DM⊥OA于M點,

由題意得,AB=AD,∠AOB=∠AMD,
又∵∠DAM+∠BAO=∠BAO+∠ABO=90°,
∴∠ABO=∠DAM,
可證得:RT△BAO≌RT△ADM,
∵A(1,0),B(0,2),
∴DM=OA=1,AM=OB=2,
則:OM=3,D(3,1),
反比例函數(shù)解析式為:y=
(2)過K分別作KH⊥BA于H,直線l∥AB,
∵S四邊形AOBK=S△BOA+S△BKA且S△BOA=1,又S△BKA=0.5××KH,
設直線l為:y=-2x+b 且b>2,
∴S四邊形AOBK的大小與線段HK的大小有關,
要使HK最小,則直線l與雙曲線y=在第一象限只有唯一交點K,
故:方程-2x+b=有唯一實根,
∴2x2-bx+3=0中△=b2-24=0,
又∵b>2,則:b=2,
∴S△BKA最小時K的坐標為(,),
(橫坐標計算正確即可得3分)
且直線KH為:y=x+,故又得:當HK最小時,H的橫坐標為:-,
∴HK最小值為|-(-)|×=-1),
即S△BKA的最小值為-1;
而可知:HK無最大值;
∴S無最大值,且當K的橫坐標為時,S達到最小值,
所以,S的取值范圍為:S≥.(不考慮過程,S范圍直接給定正確得2分)
(3)過C作CN⊥BO于N,
可得:CN=BO=2,BN=OA=1,
∴C(2,3),
又∵函數(shù)y=中,當x=2時,y=1.5;當y=3時,x=1;
∴把正方形ABCD向左平移1個單位或向下平移1.5個單位,
能使點C恰好移動到雙曲線y=上.
分析:(1)過D作DM⊥OA于M點,根據(jù)題中條件先求出AM和DM的值,繼而求出點D的坐標,繼而代入反比例函數(shù)即可;
(2)將四邊形AOBK的面積表示出來為:S四邊形AOBK=S△BOA+S△BKA且S△BOA=1,又S△BKA=0.5××KH,其大小與KH有關,繼而通過求HK的最大最小值,來判斷S的取值范圍;
(3)先求出點C的坐標,繼而求出相同橫縱坐標時,反比例函數(shù)上的值,即可得出平移規(guī)律.
點評:此題是一道反比例函數(shù)的綜合題,涉及到函數(shù)圖象交點坐標的求法、用待定系數(shù)法確定函數(shù)解析式、圖形面積的求法以及平移的相關知識,注意這些知識的熟練掌握及靈活運用,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案