【題目】小明對我校七年級(1)班喜歡什么球類運動的調(diào)查,下列圖形中的左圖是小明對所調(diào)查結(jié)果的條形統(tǒng)計圖.
(1)問七年級(1)班共有多少學生?
(2)請你改用扇形統(tǒng)計圖來表示我校七年級(1)班同學喜歡的球類運動.
(3)從統(tǒng)計圖中你可以獲得哪些信息?
【答案】(1)七年級(1)班的人數(shù)共有36名學生;(2)籃球扇形的圓心角為150°,羽毛球所對應的圓心角為60°,乒乓球所對的圓心角為110°,其他球的圓心角為40°,圖略;(3)獲得得信息見解析.
【解析】
(1)根據(jù)所給的統(tǒng)計圖中人數(shù),即可求出總?cè)藬?shù);
(2)用喜歡籃球、排球人數(shù)、乒乓球的人數(shù)除以總?cè)藬?shù)求出各自所占的百分比,再分別乘以360°求出各自圓心角的度數(shù),從而畫出圖形;
(3)根據(jù)統(tǒng)計圖所給出的數(shù)據(jù),即可得出結(jié)論.
解:(1)因為15+6+11+4=36,所以該校七年級(1)班的人數(shù)共有36名學生.
(2)因為15÷36×360°=150°,6÷36×360°=60°,11÷36×360°=110°,4÷36×360°=40°,所以籃球扇形的圓心角為150°,羽毛球所對應的圓心角為60°,乒乓球所對的圓心角為110°,其他球的圓心角為40°.
從統(tǒng)計圖中獲得得信息:如:七年級(1)班的學生喜歡籃球的人數(shù)最多有15人占41.7%,其他球的人數(shù)最少有4人,占11.1%等,合理即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn),求證:四邊形AFCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了增強學生體質(zhì),全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:
(1)本次被調(diào)查的學生有名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明同學化簡代數(shù)式a+2+ 的過程,請仔細閱讀并解答所提出的問題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯誤,正確的化簡結(jié)果是;
(2)原代數(shù)式的值能等于2嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察一列數(shù):1,2,4,8,16,…我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.
(1)等比數(shù)列3,-12,48,…的第4項是______;
(2)如果一列數(shù)a1,a2,a3,a4,…是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(用a1與q的式子表示);
(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-∠2的度數(shù)是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com