(2013•濟南)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-1,0),B(-2,3),C(-3,1),將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,得到△AB′C′,則點B′的坐標為(  )
分析:根據(jù)旋轉(zhuǎn)方向、旋轉(zhuǎn)中心及旋轉(zhuǎn)角,找到B',結合直角坐標系可得出點B′的坐標.
解答:解:如圖所示:

結合圖形可得點B′的坐標為(2,1).
故選A.
點評:本題考查了坐標與圖形的變化,解答本題的關鍵是找到旋轉(zhuǎn)的三要素,找到點B'的位置.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•濟南)如圖,直線a,b被直線c所截,a∥b,∠1=130°,則∠2的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濟南)如圖,點A的坐標是(-2,0),點B的坐標是(6,0),點C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點D,過點A作直線AE⊥BD,垂足為E,交OC于點F.
(1)求直線BD的函數(shù)表達式;
(2)求線段OF的長;
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濟南)如圖1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC關于AB所在的直線對稱,點M為邊AC上的一個動點(重合),點M關于AB所在直線的對稱點為N,△CMN的面積為S.
(1)求∠CAD的度數(shù);
(2)設CM=x,求S與x的函數(shù)表達式,并求x為何值時S的值最大?
(3)S的值最大時,過點C作EC⊥AC交AB的延長線于點E,連接EN(如圖2),P為線段EN上一點,Q為平面內(nèi)一點,當以M,N,P,Q為頂點的四邊形是菱形時,請直接寫出所有滿足條件NP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濟南)如圖1,拋物線y=-
23
x2+bx+c與x軸相交于點A,C,與y軸相交于點B,連接AB,BC,點A的坐標為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB與點D,過點B作直線l∥AC,與拋物線和⊙M的另一個交點分別是E,F(xiàn).
(1)求該拋物線的函數(shù)表達式;
(2)求點C的坐標和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點N,點P,Q為射線NB上的兩個動點(點P在點Q的右側,且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時點P的坐標并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.

查看答案和解析>>

同步練習冊答案