(2013•濟(jì)南)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-1,0),B(-2,3),C(-3,1),將△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°,得到△AB′C′,則點(diǎn)B′的坐標(biāo)為( 。
分析:根據(jù)旋轉(zhuǎn)方向、旋轉(zhuǎn)中心及旋轉(zhuǎn)角,找到B',結(jié)合直角坐標(biāo)系可得出點(diǎn)B′的坐標(biāo).
解答:解:如圖所示:

結(jié)合圖形可得點(diǎn)B′的坐標(biāo)為(2,1).
故選A.
點(diǎn)評:本題考查了坐標(biāo)與圖形的變化,解答本題的關(guān)鍵是找到旋轉(zhuǎn)的三要素,找到點(diǎn)B'的位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖,直線a,b被直線c所截,a∥b,∠1=130°,則∠2的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長;
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC關(guān)于AB所在的直線對稱,點(diǎn)M為邊AC上的一個動點(diǎn)(重合),點(diǎn)M關(guān)于AB所在直線的對稱點(diǎn)為N,△CMN的面積為S.
(1)求∠CAD的度數(shù);
(2)設(shè)CM=x,求S與x的函數(shù)表達(dá)式,并求x為何值時S的值最大?
(3)S的值最大時,過點(diǎn)C作EC⊥AC交AB的延長線于點(diǎn)E,連接EN(如圖2),P為線段EN上一點(diǎn),Q為平面內(nèi)一點(diǎn),當(dāng)以M,N,P,Q為頂點(diǎn)的四邊形是菱形時,請直接寫出所有滿足條件NP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖1,拋物線y=-
23
x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB與點(diǎn)D,過點(diǎn)B作直線l∥AC,與拋物線和⊙M的另一個交點(diǎn)分別是E,F(xiàn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點(diǎn)N,點(diǎn)P,Q為射線NB上的兩個動點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時點(diǎn)P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案