【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形④S四邊形ABMD= AM2 .
其中正確結(jié)論的是 .
【答案】①②③④
【解析】解:在菱形ABCD中,
∵AB=BD,
∴AB=BD=AD,
∴△ABD是等邊三角形,
∴根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,
∵BE=CF,
∴BC﹣BE=CD﹣CF,
即CE=DF,
在△BDF和△DCE中, ,
∴△BDF≌△DCE(SAS),故①正確;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②正確;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中, ,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等邊三角形,故③正確;
∵△ABM≌△ADH,
∴△AMH的面積等于四邊形ABMD的面積,
又∵△AMH的面積= AM AM= AM2 ,
∴S四邊形ABMD= AM2 , 故④正確,
綜上所述,正確的是①②③④.
所以答案是:①②③④.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個60°角的三角形紙片,剪去這個60°角后,得到一個四邊形,則∠1+∠2的度數(shù)為( )
A.120°
B.180°
C.240°
D.300°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過點(2,6),且與直線 相交于A,B兩點,點A在y軸上,過點B作BC⊥x軸,垂足為點C(4,0).
(1)求拋物線的解析式;
(2)若P是直線AB上方該拋物線上的一個動點,過點P作PD⊥x軸于點D,交AB于點E,求線段PE的最大值;
(3)在(2)的條件,設(shè)PC與AB相交于點Q,當(dāng)線段PC與BE相互平分時,請求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為( )
A. ﹣
B. ﹣2
C.π﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N,AH⊥MN于點H.
(1)如圖①,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)量關(guān)系:;
(2)如圖②,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點H,且MH=2,NH=3,求AH的長.(可利用(2)得到的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊等腰直角三角板ABC放置在平面直角坐標(biāo)系中,∠ACB=90°,AC=BC,點A在y軸的正半軸上,點C在x軸的負半軸上,點B在第二象限.
(1)若AC所在直線的函數(shù)表達式是y=2x+4.
①求AC的長;
②求點B的坐標(biāo);
(2)若(1)中AC的長保持不變,點A在y軸的正半軸滑動,點C隨之在x軸的負半軸上滑動.在滑動過程中,點B與原點O的最大距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,﹣3),動點P在拋物線上.
(1)b= , c= , 點B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com