如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,則五邊形ABCDE的面積等于 _________ .
.
【解析】
試題分析:延長DC,AB交于點F,作AG∥DE交DF于點G,四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形,求得等腰梯形AFDE的面積和△BCF的面積,二者的差就是所求五邊形的面積.
試題解析:延長DC,AB交于點F,作AG∥DE交DF于點G.
∵AE∥CD,∠A=∠E=120°,
∴四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形.設BF=x,
∵在直角△BCF中,∠BCF=90°-∠F=30°
∴FC=2x,
∴FD=2x+1.
∵平行四邊形AGDE中,DG=AE=2,
∴FG=2x-1,
∵△AFG是等邊三角形中,AF=FG,
∴x+1=2x-1,
解得:x=2.
在直角△BCF中,BC=BF•tanF=2,
則S△BCF=BF•BC=×2×2=2.
作AH⊥DF于點H.則AH=AF•sinF=3×=,
則S梯形AFDE=(AE+DF)•AH=×(2+5)•=.
∴S五邊形ABCDE=S梯形AFDE-S△BCF=-.
考點: 1.等腰梯形的性質(zhì);2.含30度角的直角三角形;3.勾股定理.
科目:初中數(shù)學 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com