試題分析:(1)當點P與點Q重合時,AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故填空答案:1.
(2)當點D在QF上時,如答圖1所示,此時AP=BQ=t.
∵QF∥BC,APDE為正方形,∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,則PQ=
DP=
AP=
t.
由AP+PQ+BQ=AB=2,得t+
t+t=2,解得:t=
.
故填空答案:
.
(3)當P、Q重合時,由(1)知,此時t=1;
當D點在BC上時,如答圖2所示,此時AP=BQ=t,BP=
t,求得t=
s,進一步分析可知此時點E與點F重合;
當點P到達B點時,此時t=2.
因此當P點在Q,B兩點之間(不包括Q,B兩點)時,其運動過程可分析如下:
①當1<t≤
時,如答圖3所示,此時重合部分為梯形PDGQ.
此時AP=BQ=t,∴AQ=2﹣t,PQ=AP﹣AQ=2t﹣2;
易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.
∴EF=AF﹣AE=2(2﹣t)﹣t=4﹣3t,EG=
EF=2﹣
t,
∴DG=DE﹣EG=t﹣(2﹣
t)=
t﹣2.
S=S
梯形PDGQ=
(PQ+DG)•PD=
[(2t﹣2)+(
t﹣2)]•t=
t
2﹣2t;
②當
<t<2時,如答圖4所示,此時重合部分為一個多邊形.
此時AP=BQ=t,∴AQ=PB=2﹣t,
易知△ABC∽△AQF∽△PBM∽△DNM,可得AF=2AQ,PM=2PB,DM=2DN,
∴AF=4﹣2t,PM=4﹣2t.
又DM=DP﹣PM=t﹣(4﹣2t)=3t﹣4,∴DN=
(3t﹣4).
S=S
正方形APDE﹣S
△AQF﹣S
△DMN=AP
2﹣
AQ•AF﹣
DN•DM
=t
2﹣
(2﹣t)(4﹣2t)﹣
×
(3t﹣4)×(3t﹣4)
=﹣
t
2+10t﹣8.
綜上所述,當點P在Q,B兩點之間(不包括Q,B兩點)時,S與t之間的函數(shù)關(guān)系式為:
S=
.
點評:本題是運動型綜合題,涉及到動點與動線問題.第(1)(2)問均涉及動點問題,列方程即可求出t的值;第(3)問涉及動線問題,是本題難點所在,首先要正確分析動線運動過程,然后再正確計算其對應的面積S.本題難度較大,需要同學們具備良好的空間想象能力和較強的邏輯推理能力.