在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A.請(qǐng)完成下列表格:
事件A | 必然事件 | 隨機(jī)事件 |
m的值 |
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率等于,求m的值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件型服裝計(jì)酬16元,加工1件型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件型服裝和2件型服裝需4小時(shí),加工3件型服裝和1件型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件型服裝和1件型服裝各需要多少小時(shí)?(4分)
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工,兩種型號(hào)的服裝,且加工型服裝數(shù)量不少于型服裝的一半”.設(shè)一名熟練工人每月加工型服裝件,工資總額為元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知A點(diǎn)的坐標(biāo)為(-1,3),將A點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針90°,
則點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.已知拋物線y=ax2+bx+c(a>0)過(guò)(-2,0),(2,3)兩點(diǎn),那么拋物線的對(duì)稱軸( )
A.只能是x=-1
B.可能是y軸
C.在y軸右側(cè)且在直線x=2的左側(cè)
D.在y軸左側(cè)且在直線x=-2的右側(cè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1是小志同學(xué)書(shū)桌上的一個(gè)電子相框,將其側(cè)面抽象為如圖2所示的幾何圖形,已知BC=BD=15cm,∠CBD=40°,則點(diǎn)B到CD的距離為 cm(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.計(jì)算結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖像的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F.
(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為 ;當(dāng)二次函數(shù)L1,L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是 ;
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫(xiě)出,不必證明);
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程
-a(x+1)2+1=0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,有兩點(diǎn)A(6,3)、B(6,0).以原點(diǎn)O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點(diǎn)C的坐標(biāo)為( )
A.(2,1)
B.(2,0)
C.(3,3)
D.(3,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
△ABC中,點(diǎn)E、P在邊AB上,且AE=BP,過(guò)點(diǎn)E、P作BC的平行線,分別交AC于點(diǎn)F、Q.記△AEF的面積為S1,四邊形EFQP的面積為S2,四邊形PQCB的面積為S3
(1) 求證:EF+PQ=BC
(2) 若S1+S3=S2,求的值
(3) 若S3-S1=S2,直接寫(xiě)出的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com