【題目】如圖,在數(shù)軸上每相鄰兩點(diǎn)間的距離為一個(gè)單位長度,點(diǎn)A、B、C、D對應(yīng)的數(shù)分別是a、b、c、d,且d﹣2a=14

(1)那么a= , b=;
(2)點(diǎn)A以3個(gè)單位/秒的速度沿著數(shù)軸的正方向運(yùn)動(dòng),1秒后點(diǎn)B以4個(gè)單位/秒的速度也沿著數(shù)軸的正方向運(yùn)動(dòng).當(dāng)點(diǎn)A到達(dá)D點(diǎn)處立刻返回,與點(diǎn)B在數(shù)軸的某點(diǎn)處相遇,求這個(gè)點(diǎn)對應(yīng)的數(shù);
(3)如果A、B兩點(diǎn)以(2)中的速度同時(shí)向數(shù)軸的負(fù)方向運(yùn)動(dòng),點(diǎn)C從圖上的位置出發(fā)也向數(shù)軸的負(fù)方向運(yùn)動(dòng),且始終保持AB= AC.當(dāng)點(diǎn)C運(yùn)動(dòng)到﹣6時(shí),點(diǎn)A對應(yīng)的數(shù)是多少?

【答案】
(1)-6;-8
(2)解:由(1)可知:a=﹣6,b=﹣8,c=﹣3,d=2,

點(diǎn)A運(yùn)動(dòng)到D點(diǎn)所花的時(shí)間為 ,

設(shè)運(yùn)動(dòng)的時(shí)間為t秒,

則A對應(yīng)的數(shù)為2﹣3(t﹣ )=10﹣3t,

B對應(yīng)的數(shù)為:﹣8+4(t﹣1)=4t﹣12,

當(dāng)A、B兩點(diǎn)相遇時(shí),10﹣3t=4t﹣12,t= ,

∴4t﹣12=

答:這個(gè)點(diǎn)對應(yīng)的數(shù)為


(3)解:設(shè)運(yùn)動(dòng)的時(shí)間為t

A對應(yīng)的數(shù)為:﹣6﹣3t

B對應(yīng)的數(shù)為:﹣8﹣4t

∴AB=|﹣6﹣3t﹣(﹣8﹣4t)|=|t+2|=t+2

∵AB= AC.

∴AC= AB= t+3,

∵C對應(yīng)的數(shù)為﹣6,

∴AC=|﹣6﹣(﹣6﹣3t)|=|3t|= t+3,

①當(dāng)3t= t+3,t=2;

②當(dāng)3t+ t+3=0,t=﹣ ,不符合實(shí)際情況,

∴t=2,

∴﹣6﹣3t=﹣12.

答:點(diǎn)A對應(yīng)的數(shù)為﹣12


【解析】解:(1)由圖可知:d=a+8,
∵d﹣2a=14,
∴a+8﹣2a=14,
解得a=﹣6,
則b=a﹣2=﹣8;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)軸(數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在排成每行七天的月歷表中取下一個(gè)3×3方塊(如圖所示).若所有日期數(shù)之和為108,且n所在的是星期四,則2n+5是星期幾?(

A.星期四
B.星期六
C.星期日
D.星期一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程2x﹣4(x﹣1)=2的解是x=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a+1|=0,b2=9,則a+b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.

(1)通過計(jì)算,判斷與AC·CD 的大小關(guān)系;

(2)求ABD 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列正整數(shù)中,屬于素?cái)?shù)的是( 。

A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程沒有實(shí)數(shù)根的是(  )

A.x20B.x2+x0C.x2+x+10D.x2+x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°AB=10cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后停止運(yùn)動(dòng),且速度為每秒2cm,設(shè)出發(fā)的時(shí)間為t秒.

1)當(dāng)t為何值時(shí),PBC是等腰三角形;

2)過點(diǎn)PPHAB,垂足為H,當(dāng)HAB中點(diǎn)時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算3a2﹣a2的結(jié)果是( 。
A.4a2
B.3a2
C.2a2
D.3

查看答案和解析>>

同步練習(xí)冊答案