如圖1,已知雙曲線與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為 ;當(dāng)x滿足: 時(shí),y1>y2;
(2)過原點(diǎn)O作另一條直線l,交雙曲線于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.
①四邊形APBQ一定是 ;
②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;
③設(shè)點(diǎn)A、P的橫坐標(biāo)分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.
考點(diǎn):
反比例函數(shù)綜合題..
專題:
數(shù)形結(jié)合.
分析:
數(shù)與形相結(jié)和,理解正比例函數(shù)與反比例函數(shù)的性質(zhì),并對(duì)函數(shù)的性質(zhì)靈活運(yùn)用,同時(shí)也訓(xùn)練了平行四邊形和矩形的相關(guān)性質(zhì).點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,所以B點(diǎn)坐標(biāo)為(﹣4,﹣2),在第三象限當(dāng)x<﹣4時(shí)y1>y2,在第一象限當(dāng)0<x<4時(shí)y1>y2.由對(duì)角線互相平分的四邊形是平行四邊形可證明APBQ是平行四邊形.平行四邊形的對(duì)角線把它分成四個(gè)面積相等的三角形,所以只要求出△AOP的面積,再將其乘以4就可以得到APBQ的面積.根據(jù)對(duì)角線相等的平行四邊形是矩形可知,當(dāng)mn=k時(shí)OP=OA,此時(shí)APBQ是矩形.
解答:
解:(1)因?yàn)檎壤瘮?shù)與反比例都關(guān)于原點(diǎn)成中心對(duì)稱,所以B點(diǎn)的坐標(biāo)為B(﹣4,﹣2);
由兩個(gè)函數(shù)都經(jīng)過點(diǎn)A(4,2),可知雙曲線的解析式為y1=,直線的解析式為y2=x,
雙曲線在每一象限y隨x的增大而減小,直線y隨x的增大而增大,
所以當(dāng)x<﹣4或0<x<4時(shí),y1>y2.
(2)①∵正比例函數(shù)與反比例函數(shù)都關(guān)于原點(diǎn)成中心對(duì)稱,
∴OA=OB,OP=OQ,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形可知APBQ一定是平行四邊形.
②∵A點(diǎn)的坐標(biāo)是(3,1)
∴雙曲線為y=,
所以P點(diǎn)坐標(biāo)為(1,3),
過A作x軸的垂線CD交x軸于C,可得直角梯形OPDC,過P作PD⊥DC,垂足為D,
用直角梯形的面積減去直角三角形的面積可得三角形POA的面積為4,再用4×4得四邊形APBQ為16.
③∵當(dāng)mn=k時(shí),此時(shí)A(m,n),P(n,m),
∴OA=OP,對(duì)角線相等且互相平分的四邊形是矩形,
∴四邊形APBQ是矩形.
點(diǎn)評(píng):
此題考點(diǎn)清晰,難度不大,但數(shù)形結(jié)合能比較綜合的考查學(xué)生的分析能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014屆江蘇省無錫市八年級(jí)3月月考數(shù)學(xué)試卷 題型:解答題
如圖1,已知雙曲線與直線交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
⑴若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為 ;
⑵當(dāng)x滿足: 時(shí),;
⑶過原點(diǎn)O作另一條直線l,交雙曲線于P,Q兩點(diǎn),點(diǎn)P在第一象限, 如圖2所示.
①四邊形APBQ一定是 ;
② 若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com