B
分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC與∠C的度數(shù),又由AB的垂直平分線DE交AC于D,交AB于E,根據(jù)線段垂直平分線的性質(zhì),可證得AD=BD,繼而可求得∠ABD,∠DBC的度數(shù),則可得BD平分∠ABC;又可求得∠BDC的度數(shù),則可證得AD=BD=BC;可求得△BDC的周長等于AB+BC.
解答:∵△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠C=
=72°,
∵AB的垂直平分線DE交AC于D,交AB于E,
∴AD=BD,
∴∠ABD=∠A=36°,
∵∠DBC=∠ABC-∠ABD=36°=∠ABD,
∴BD平分∠ABC;
故(1)正確;
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C,
∴BD=BC=AD,
故(2)正確;
△BDC的周長等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;
故(3)正確;
∵AD=BD>CD,
∴D不是AC的中點,
故(4)錯誤.
故選B.
點評:此題考查了線段垂直平分線的性質(zhì)與等腰三角形的判定與性質(zhì).此題難度適中,注意掌握轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用.