【題目】選取二次三項式中的兩項,配成完全平方式的過程叫做配方.例如

選取二次項和一次項配方:;

選取二次項和常數(shù)項配方:,或;

選取一次項和常數(shù)項配方:

根據(jù)上述材料,解決下面問題:

寫出的兩種不同形式的配方;

,求的值;

若關(guān)于的代數(shù)式是完全平方式,求的值;

用配方法證明:無論取什么實數(shù)時,總有恒成立.

【答案】(1)①選取二次項和一次項配方:;②選取二次項和常數(shù)項配方: ;;(4)詳見解析

【解析】

(1)根據(jù)題目中所給的方法解答即可;(2)把化為根據(jù)非負(fù)數(shù)的性質(zhì)求得x、y的值,即可求得的值;(3)根據(jù)完全平方式的特點,結(jié)合根的判別式解答即可;(4)因>0,由此即可解答.

(1)①選取二次項和一次項配方:;

選取二次項和常數(shù)項配方:

,

,

,

,

;

根據(jù)題意得

解得;

證明:,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,,兩條對角線相交于點.以、為鄰邊作第個平行四邊形,對角線相交于點;再以為鄰邊作第個平行四邊形,對角線相交于點;再以、為鄰邊作第個平行四邊形依此類推.

求矩形的面積;

求第個平行四邊形,第個平行四邊形和第個平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2.

1)上述操作能驗證的等式是________(填ABC

Aa2-2ab+b2=a-b2

Ba2-b2=a+b)(a-b

Ca2+ab=aa+b)  

2)應(yīng)用你從(1)中選出的等式,完成下列各題:

①已知x2-4y2=12,x+2y=4,x-2y的值

②計算:(1-)(1-)(1-1-)(1-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是菱形,是正三角形,、分別在上,且,則____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(

A. 如果把一個三角形的各邊擴大為原來的倍,那么它的周長也擴大為原來的

B. 相似三角形對應(yīng)高的比等于對應(yīng)中線的比

C. 相似多邊形的面積比等于周長比的平方

D. 如果把一個多邊形的面積擴大為原來的倍,那么它的各邊也擴大為原來的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),下列說法:方程必有實數(shù)根;若移動函數(shù)圖象使其經(jīng)過原點,則只能將圖象向右移動個單位;當(dāng)時,拋物線頂點在第三象限;,則當(dāng)時,隨著的增大而增大,其中正確的序號是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點,且

求拋物線的解析式及頂點的坐標(biāo);

判斷的形狀,證明你的結(jié)論;

軸上的一個動點,當(dāng)的周長最小時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在求時,小琳發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是她設(shè),然后在的兩邊都乘2,得,由②-①,得,從而得到答案.參照以上方法,解決下列問題.

1)求出的值.

2)求出的值.

3)得到答案后,愛動腦筋的小琳想:如果把式子中的數(shù)字換成字母),那么你能否求出(其中為正整數(shù))的值呢?若能,請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直角三角形ABC中,∠B=90°.將它放在平面直角坐標(biāo)系中,A(0,1),且滿足(AB-4)2+=0.

(1)求直線AC的解析式.

(2)在直線BC上是否存在點P,使SAPC= 6?若存在,求P點坐標(biāo);若不存在,說明理由.

(3)如果My軸上,且AMC是以AC為腰的等腰三角形,M的坐標(biāo)

(4)如果DAC的中點,問在y軸上是否存在點M,使得MD+ AC最?存在的話,請直接寫出M的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案