已知實(shí)數(shù)x、y滿足x2+2x+y-1=0,則x+2y的最大值為          .


【解析】因?yàn)?sub>x²+2x+y-1=0,所以y=-x²-2x+1,所以x+2y=x-x²-4x+2=-x²-3x+2=-(x+)²+,當(dāng)x=-時(shí),x+2y有最大值,(x+2y)的最大值=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,分別是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體的主視圖和俯視圖,則組成這個(gè)幾何體的小正方體的個(gè)數(shù)是(    )

A.2個(gè)或3個(gè)   B.3個(gè)或4個(gè)    C.4個(gè)或5個(gè)  D.5個(gè)或6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


B.

【解析】連接BE,由AB是直徑得∠AEB=90°,由CD⊥AB得∠ACF=90°,進(jìn)一步可以證得△ACF∽△AEB,所以,所以AE×AF=AC×AB,即AE×AF=12.

故選B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:在△ABC中,BC=10,BC邊上的高h(yuǎn)=5,點(diǎn)E在邊AB上,過點(diǎn)E作EF∥BC,交AC邊于點(diǎn)F.點(diǎn)D為BC上一點(diǎn),連接DE、DF.設(shè)點(diǎn)E到BC的距離為x,則△DEF的面積S關(guān)于x的函數(shù)圖象大致為(  ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


三角形的三邊長分別為3、m、5,化簡

_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補(bǔ)全頻數(shù)分布直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(-3,0)、B(-1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx-4k (k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.

(1)求該二次函數(shù)的解析式;

(2)當(dāng)點(diǎn)P的坐標(biāo)為(-4,m)時(shí),求證:∠OPC=∠AQC;

(3)點(diǎn)M、N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M、N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①連接AN,當(dāng)△AMN的面積最大時(shí),求t的值;

②直線PQ能否垂直平分線段MN?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某校報(bào)名參加甲、乙、丙、丁四個(gè)興趣小組的學(xué)生人數(shù)如圖所示,那么報(bào)名參加甲組和丙組的人數(shù)之和占所有報(bào)名人數(shù)的百分比為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至 C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào).一艘在港口正東方向B處的海警船接到求救信號(hào),測得事故船在它的北偏東37°方向。

(1)求海警船距離事故船C的距離BC.

(2)若海警船以40海里/小時(shí)的速度前往救援,求海警船到達(dá)事故船C處大約所需的時(shí)間.(溫馨提示:sin 53°≈0.8,cos 53°≈0.6)                                                

查看答案和解析>>

同步練習(xí)冊(cè)答案