如圖,在△ABC中,AB=BC,P為AB邊上一點,連接CP,以PA、PC為鄰邊作□APCD,AC與PD相交于點E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求證:∠EAP=∠EPA;
(2)□APCD是否為矩形?請說明理由;
(3)如圖,F(xiàn)為BC中點,連接FP,將∠AEP繞點E順時針旋轉適當?shù)慕嵌龋玫健螹EN(點M、N分別是∠MEN的兩邊與BA、FP延長線的交點).猜想線段EM與EN之間的數(shù)量關系,并證明你的結論.
(1)證明:在△ABC和△AEP中 ∵∠ABC=∠AEP,∠BAC=∠EAP ∴∠ACB=∠APE 在△ABC中,AB=BC ∴∠ACB=∠BAC ∴∠EPA=∠EAP (2)答:□APCD是矩形 ∵四邊形APCD是平行四邊形 ∴AC=2EA,PD=2EP ∵由(1)知∠EPA=∠EAP ∴EA=EP 則AC=PD ∴□APCD是矩形 (3)答:EM=EN ∵EA=EP ∴∠EPA=90°-α ∴∠EAM=180°-∠EPA=180°-(90°-α)=90°+α 由(2)知∠CPB=90°,F(xiàn)是BC的中點,∴FP=FB ∴∠FPB=∠ABC=α ∴∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90°-α+α=90°+α ∴∠EAM=∠EPN ∵∠AEP繞點E順時針旋轉適當?shù)慕嵌龋玫健螹EN ∴∠AEP=∠MEN ∴∠AEP-∠AEN=∠MEN-∠AEN即∠MEA=∠NEP ∴△EAM≌△EPN ∴EM=EN |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com