已知:
(1)a>0
(2)當(dāng)-1≤x≤1時,滿足|ax2+bx+c|≤1;
(3)當(dāng)-1≤x≤1時,ax+b有最大值2.
求常數(shù)a、b、c.
當(dāng)a>0時,ax+b的值隨著x取值的增大而增大,
所以x=1時,ax+b有最大值a+b,即:a+b=2
令x=0,則|c|≤1,即:-1≤c≤1
令x=1,則|a+b+c|≤1,即:|2+c|≤1,
所以-3≤c≤-1
故c=-1.
令y=ax2+bx+c,則拋物線y=ax2+bx+c必過(0,-1)
因為當(dāng)-1≤x≤1時,-1≤ax2+bx+c≤1,所以該二次函數(shù)的最小值是-1,
4ac-b2
4a
=-1

∴4ac-b2=-4a
∵c=-1
-4a-b2=-4a
∴b=0
∴a=2
所以a=2,b=0,c=-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某飲料經(jīng)營部每天的固定成本為200元,其銷售的飲料每瓶進價為5元.銷售單價與日均銷售量的關(guān)系如下:
售價單價(元)67891112
日均銷售量(瓶)480440400360320240
(1)若記銷售單價比每瓶進價多x元時,日均毛利潤(毛利潤=售價-進價-固定成本)為y元,求y關(guān)于x的函數(shù)解析式和自變量的取值范圍;
(2)若要使日均毛利潤達到最大,銷售單價應(yīng)定為多少元?最大日均毛利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,點B的坐標(biāo)為(-3,-4),線段OB繞原點逆時針旋轉(zhuǎn)后與x軸的正半軸重合,點B的對應(yīng)點為點A.
(1)直接寫出點A的坐標(biāo),并求出經(jīng)過A,O,B三點的拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點C,使BC+OC的值最?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)如果點P是拋物線上的一個動點,且在x軸的上方,當(dāng)點P運動到什么位置時,△PAB的面積最大?求出此時點P的坐標(biāo)和△PAB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,開口向上的拋物線y=ax2+bx+c與x軸交于點A(-6,0),另一個交點是B,與y軸的交點是C,且拋物線的頂點的縱坐標(biāo)是-2,△AOC的面積為6
3

(1)求點B、C的坐標(biāo);
(2)求拋物線的解析式;
(3)M點從點A出發(fā)向點C以每秒
3
2
個單位勻速運動.同時點P以每秒2個單位的速度從A點出發(fā),沿折線AB、BC向點C勻速運動,在運動的過程中,設(shè)△AMP的面積為y,運動的時間為x,求y與x的函數(shù)關(guān)系式及y的最大值;
(4)在運動的過程中,過點M作MNx軸交BC邊于N,試問,在x軸上是否存在點Q,使△MNQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點在線段AB上運動(拋物線隨頂點一起平移),與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標(biāo)最小值為-3,則點D的橫坐標(biāo)最大值為( 。
A.-3B.1C.5D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點A(-2,0)和點B,與y軸相交于點C,頂點D(1,-
9
2

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個交點,請直接寫出一個平移后的拋物線的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖1,菱形紙片ABCD中,AB=1,∠B=60°,將紙片翻折(如圖2),使D點落在AD所在直線上,并可在直線AD上運動,折痕為EF.當(dāng)
1
2
<DE<1時,設(shè)AB與DC相交于點G(如圖).
(1)線段AD與DG相等嗎?△ADG與△BCG的面積之和是否隨著DE的變化而變化?為什么?
(2)設(shè)AD=x,重疊部分(圖3中陰影部分)的面積為y,求出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍以及面積y的取值范圍.?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標(biāo)系中,使AB在x軸上,點C在直線y=x-2上.
(1)求矩形各頂點坐標(biāo);
(2)若直線y=x-2與y軸交于點E,拋物線過E、A、B三點,求拋物線的關(guān)系式;
(3)判斷上述拋物線的頂點是否落在矩形ABCD內(nèi)部,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交于A、B兩點,與y軸交于點C.
(1)點A的坐標(biāo)為______,點B的坐標(biāo)為______,點C的坐標(biāo)為______.
(2)設(shè)拋物線y=x2-2x-3的頂點為M,求四邊形ABMC的面積.

查看答案和解析>>

同步練習(xí)冊答案