(2007•濰坊)如圖,兩個全等的長方形ABCD與CDEF,旋轉(zhuǎn)長方形ABCD能和長方形CDEF重合,則可以作為旋轉(zhuǎn)中心的點有( )

A.1個
B.2個
C.3個
D.無數(shù)個
【答案】分析:根據(jù)長方形的中心對稱性,可得要旋轉(zhuǎn)長方形ABCD能和長方形CDEF重合,必須以CD的中點為旋轉(zhuǎn)中心,進而可得答案.
解答:解:根據(jù)長方形的性質(zhì),對角線互相平分且相等,
所以對角線的交點是長方形的對稱中心;
故長方形ABFE的對稱中心是其對角線的交點,即CD的中點;
進而可得:可以作為旋轉(zhuǎn)中心的點只有CD的中點.
故選A.
點評:本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(40)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學中考數(shù)學一模試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(35)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案