【問(wèn)題】如圖17-1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖17-2),然后連結(jié)PP′.
解決問(wèn)題請(qǐng)你通過(guò)計(jì)算求出圖17-2中∠BPC的度數(shù);
類(lèi)比研究 如圖17-3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為 ; (2)直接寫(xiě)出正六邊形ABCDEF的邊長(zhǎng)為 .
解:【解決問(wèn)題】
根據(jù)【分析】中的思路,得到如圖6所示的圖形,
根據(jù)旋轉(zhuǎn)的性質(zhì)可得PB=P′B, PC=P′A,
又因?yàn)锽C=AB, ∴△PBC≌△P′BA,
∴∠PBC=∠P′BA ,∠BPC=∠BP′A , PB= P′B=,
∴∠P′BP=90°,所以△P′BP為等腰直角三角形,
則有P′P=2,∠BP′P=45°. ……………………2分
又因?yàn)镻C=P′A=1,P′P =2,PA=,
滿足P′A2+ P′P2=PA2,由勾股定理的逆定理可知∠AP′P=90°, ……………4分
因此∠BPC=∠BP′A=45°+90°=135°. ……………………6分
【類(lèi)比研究】(1)120°; ……………………8分
(2). ……………………10分
參考提示:
(1)仿照【分析】中的思路,將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°,得到了△BP′A,然后連結(jié)PP′.如圖7所示,根據(jù)旋轉(zhuǎn)的性質(zhì)可得:△PBC≌△P′BA,
△BPP′為等腰三角形,PB= P′B=4,PC=P′A=2,∠BPC=∠BP′A,
∵∠ABC=120°,∴∠PBP′=120°,∠BP′P=30°,
∴求得PP′=,
在△APP′中,∵PA=,PP′=,P′A=2,
滿足P′A2+ P′P2=PA2,所以∠AP′P=90°.
∠BPC=∠BP′A=30°+90°=120°.
(2)延長(zhǎng)A P′ 做BG⊥AP′于點(diǎn)G,如圖8所示,
在Rt△P′BG中,P′B=4,∠BP′G=60°,
所以P′G=2,BG=,則AG= P′G +P′A =2+2=4,
故在Rt△ABG中,根據(jù)勾股定理得AB=.
解析:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°,得到了△BP′A,然后連結(jié)PP′.如圖7所示,根據(jù)旋轉(zhuǎn)的性質(zhì)可得:△PBC≌△P′BA,后根據(jù)勾股定理得出∠AP′P=90°,從而得出∠BPC=120°;延長(zhǎng)A P′ 做BG⊥AP′,構(gòu)建直角三角形,也是由勾股定理得出AB=。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州十一中九年級(jí)第二學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
【問(wèn)題】如圖,在正方形ABCD內(nèi)有一點(diǎn)P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖),然后連結(jié)PP′.
解決問(wèn)題請(qǐng)你通過(guò)計(jì)算求出圖17-2中∠BPC的度數(shù);
【類(lèi)比研究】如圖,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為 ;(2)直接寫(xiě)出正六邊形ABCDEF的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題
【問(wèn)題】如圖17-1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖17-2),然后連結(jié)PP′.
解決問(wèn)題請(qǐng)你通過(guò)計(jì)算求出圖17-2中∠BPC的度數(shù);
類(lèi)比研究如圖17-3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為 ;(2)直接寫(xiě)出正六邊形ABCDEF的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
【問(wèn)題】如圖17-1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=,PB=,PC=1,求∠BPC的度數(shù).
分析根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖17-2),然后連結(jié)PP′.
解決問(wèn)題請(qǐng)你通過(guò)計(jì)算求出圖17-2中∠BPC的度數(shù);
類(lèi)比研究 如圖17-3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=,PB=4,PC=2.
(1)∠BPC的度數(shù)為 ; (2)直接寫(xiě)出正六邊形ABCDEF的邊長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com