已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x-101234
y1052125
(1)無論x取何值對(duì)應(yīng)的函數(shù)值y都是正數(shù);(2)當(dāng)x>3時(shí)y隨x的增大而增大;(3)當(dāng)x=5時(shí),y=10.
以上說法正確的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
根據(jù)表格,當(dāng)x=0時(shí),y=5,當(dāng)x=1時(shí),y=2,
c=5
1+b+c=2
,
解得
b=-4
c=5

∴二次函數(shù)解析式為y=x2-4x+5,
①y=x2-4x+5=(x-2)2+1,
∴無論x取何值對(duì)應(yīng)的函數(shù)值y都是正數(shù),故本小題正確;
②拋物線對(duì)稱軸為x=2,
當(dāng)x>2時(shí),y隨x的增大而增大,
∴當(dāng)x>3時(shí)y隨x的增大而增大正確,故本小題正確;
③當(dāng)x=5時(shí),y=52-4×5+5=25-20+5=10,故本小題正確;
綜上所述,①②③都正確.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=
1
2
x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);
(3)將△AOB沿x軸向右平移m個(gè)單位長度(0<m<3)得到另一個(gè)三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(1,0)、C,交y軸于點(diǎn)B,對(duì)稱軸x=-1與x軸交于點(diǎn)D.
(1)求該拋物線的解析式和B、C點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P(x,y)是第二象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PBD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)點(diǎn)G在x軸負(fù)半軸上,且∠GAB=∠GBA,求G的坐標(biāo);
(4)若此拋物線上有一點(diǎn)Q,滿足∠QCA=∠ABO,若存在,求直線QC的解析式;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-
1
2
(x+1)2-1的頂點(diǎn)坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2-x+m(m為常數(shù))的圖象如圖所示,當(dāng)x=a時(shí),y<0;那么當(dāng)x=a-1時(shí),函數(shù)值( 。
A.y<0B.0<y<mC.y>mD.y=m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=2x2+bx+c的頂點(diǎn)坐標(biāo)為(2,-3),那么b=______,c=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中屬于二次函數(shù)的是( 。
A.y=x(x+1)B.x2y=1
C.y=2x2-2(x2+1)D.y=
3x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=-3(x+1)2-2的頂點(diǎn)坐標(biāo)是( 。
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案