【題目】已知下列命題:

a>b,則c﹣a<c﹣b;

a>0,則=a;

對角線互相平分且相等的四邊形是菱形;

如果兩條弧相等,那么它們所對的圓心角相等.

其中原命題與逆命題均為真命題的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

【答案】D

【解析】

試題根據(jù)不等式的性質(zhì),二次根式的性質(zhì),矩形的判定,圓周角定理分別作出判斷

ab,則c﹣ac﹣b;逆命題為:若c﹣ac﹣b,則ab。原命題與逆命題都是真命題。

a0,則;逆命題:若,則a0,是假命題。故此選項錯誤。

對角線互相平分且相等的四邊形是矩形;原命題是假命題,故此選項錯誤。

如果兩條弧相等,那么它們所對的圓心角相等;逆命題為:相等的圓心角所對的弧相等,是假命題。故此選項錯誤。

故原命題與逆命題均為真命題的個數(shù)是1個。

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△是等邊三角形,的中點(diǎn),,垂足為點(diǎn),,,下列結(jié)論錯誤的是( )

A.30°B.

C.的周長為10D.的周長為9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,EFACF,DBACM,∠1=2,∠3=C

(1)求證:AB//MN

(2)若∠C=40°,∠MND=100°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,D為BC延長線上的一點(diǎn),CE平分ACD,CE=BD,求證:ADE為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在探究平行線的判定——基本事實:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行時,老師布置了這樣的任務(wù):

請同學(xué)們分組在學(xué)案上(如圖),用直尺和三角尺畫出過點(diǎn)P與直線AB平行的直線PQ;并思考直尺和三角尺在畫圖過程中所起的作用.

小菲和小明所在的小組是這樣做的:他們選取直尺和含有45°角的三角尺,用平移三角尺的畫圖方法畫出AB的平行線PQ并將實際畫圖過程抽象出平面幾何圖形(如圖).

以下是小菲和小明所在小組關(guān)于直尺和三角尺作用的討論:

①在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實際上就是先畫∠BMD=45°,再過點(diǎn)P畫∠BMD=45°

②由初始位置的三角尺和終止位置的三角尺各邊所在直線構(gòu)成一個“三線八角圖”,其中QP為截線

③初始位置的三角尺和終止位置的三角尺在“三線八角圖”中構(gòu)成一組同位角

④在畫圖過程中,直尺可以由直線CD代替

⑤在“三線八角圖”中,因為ABCD是截線,所以,可以下結(jié)論“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”

其中,正確的是(

A.①②⑤B.①③④C.②④⑤D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計劃對某區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.求甲、乙兩工程隊每天能完成綠化的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)D(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).

(1)求拋物線的解析式;

(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)PAC的面積為S,求S的最大值并求出此時點(diǎn)P的坐標(biāo);

(3)設(shè)拋物線的頂點(diǎn)為D,DEx軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉行中國夢校園好聲音歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

1)根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊答案