如圖,在△ABC中,∠C=90°,∠B=40°,AD是角平分線,則∠ADC=               度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知:在△ABC中,BC>AC,動點D繞△ABC的頂點A逆時針旋轉(zhuǎn),且AD=BC,連接DC.過AB,DC的中點E,F作直線,直線EF與直線AD,BC分別相交于點M,N.

(1)如圖1,當(dāng)點D旋轉(zhuǎn)到BC的延長線上時,點N恰好與點F重合,取AC的中點H,連接HE,HF,根據(jù)三角形中位線定理和平行線的性質(zhì),可得∠AMF與∠ENB有何數(shù)量關(guān)系?(不需證明).

(2)當(dāng)點D旋轉(zhuǎn)到圖2或圖3中的位置時,∠AMF與∠ENB有何數(shù)量關(guān)系?請分別寫出猜想,并任選一種情況證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


方程x2﹣9x+18=0的兩個根是等腰三角形的底和腰,則這個等腰三角形的周長為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


木工師傅在做完門框后,為防止變形常常像圖中所示那樣釘上兩條斜拉的木板條(即圖中的AB和CD),這樣做的根據(jù)是( 。

A.矩形的對稱性

B.矩形的四個角都是直角

C.三角形的穩(wěn)定性

D.兩點之間線段最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC中,D為AB中點,E在AC上,且BE⊥AC.若DE=10,AE=16,則BE的長度為( 。

A.10

B.11

C.12

D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理
∵AB=CD, ∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°, ∴∠FDG=180°,點F、D、G共線.
根據(jù) ,易證△AFG≌ ,得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


a是不為1的有理數(shù),我們把稱為a的差倒數(shù),如2的差倒數(shù)是,﹣1的差倒數(shù)是,已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),…,依此類推,則a2012= _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


                       叫做命題,它由          、         兩部分組成.常寫成“              ,                  ”的形式.

查看答案和解析>>

同步練習(xí)冊答案