如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn)精英家教網(wǎng),與y軸交于C、D兩點(diǎn),過C點(diǎn)作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點(diǎn)恰為⊙A與x軸的兩個(gè)交點(diǎn),且拋物線的頂點(diǎn)在直線上y=
3
3
x+2上,求此拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上,并說明理由.
分析:(1)連接AC,由Rt△AOC∽R(shí)t△COB?
AO
OC
=
OC
OB
,求得OB的長,即可得出確定B點(diǎn)坐標(biāo),進(jìn)而可根據(jù)B、C坐標(biāo)用待定系數(shù)法求得BC直線的解析式.
(2)根據(jù)圓心的坐標(biāo)及圓的半徑不難得出E、F的坐標(biāo).根據(jù)拋物線和圓的對(duì)稱性可知:拋物線頂點(diǎn)和圓心的橫坐標(biāo)必相等,據(jù)此可根據(jù)直線BC的解析式求出拋物線的頂點(diǎn)坐標(biāo).然后根據(jù)E、F及頂點(diǎn)坐標(biāo)求出拋物線的解析式.
(3)在(1)中已經(jīng)求得C點(diǎn)坐標(biāo),將C點(diǎn)坐標(biāo)代入拋物線的解析式中進(jìn)行判斷即可
解答:精英家教網(wǎng)解:(1)連接AC,則AC⊥BC.
∵OA=2,AC=4,
∴OC=2
3

又∵Rt△AOC∽R(shí)t△COB,
AO
OC
=
OC
OB

∴OB=6.
∴點(diǎn)C坐標(biāo)為(0,2
3
),點(diǎn)B坐標(biāo)為(-6,0).
設(shè)直線BC的解析式為y=kx+b,
可求得直線BC的解析式為y=
3
3
x+2
3


精英家教網(wǎng)(2)由題意得,⊙A與x軸的交點(diǎn)分別為E(-2,0)、F(6,0),
拋物線的對(duì)稱軸過點(diǎn)A為直線x=2.
∵拋物線的頂點(diǎn)在直線y=
3
3
x+2上,
∴拋物線頂點(diǎn)坐標(biāo)為(2,
2
3
3
+2
).
設(shè)拋物線解析式為y=a(x-2)2+(
2
3
3
+2
).
∵拋物線過點(diǎn)E(-2,0),
∴0=a(-2-2)2+
2
3
3
+2

解得a=-
3
24
-
1
8

∴拋物線的解析式為y=(-
3
24
-
1
8
)(x-2)2+
2
3
3
+2

即y=-
3+
3
24
x2 +
3+
3
6
x+
3+
3
2


(3)∵點(diǎn)C的坐標(biāo)是(0,2
3
).
拋物線與y軸的交點(diǎn)坐標(biāo)為(0,
3
+3
2
),
∴點(diǎn)C不在拋物線上.
點(diǎn)評(píng):本題主要考查了二次函數(shù)的綜合,在解題時(shí)要結(jié)合圓的相關(guān)知識(shí)、二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn)綜合起來運(yùn)用是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案