已知直線ln:y=-
n+1
n
x+
1
n
(n是正整數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與 x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(O是平面直角坐標(biāo)系的原點(diǎn))的面積為s1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為s2,…,依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn
(1)求△A1OB1的面積s1;
(2)求s1+s2+s3+…+s2009的值.
分析:(1)求出直線與X、Y軸的交點(diǎn)坐標(biāo),根據(jù)三角形的面積公式求出即可;
(2)由(1)知:S1=
1
2
×1×
1
2
=
1
2
×(1-
1
2
),同理求出S2=
1
2
×(
1
2
-
1
3
),S3=
1
2
1
3
-
1
4
),…S2009=
1
2
×(
1
2009
-
1
2010
),代入S1+S2+S3+…+S2009求出即可.
解答:解:(1)y=-2x+1,
當(dāng)x=0時(shí),y=1,
當(dāng)y=0時(shí),x=
1
2
,
∴S1=
1
2
×1×
1
2
=
1
4

答:△A1OB1的面積s1
1
4


(2)由(1)知:S1=
1
2
×1×
1
2
=
1
2
×(1-
1
2
),
同理求出S2=
1
2
×
1
2
×
1
3
=
1
2
×(
1
2
-
1
3
),
S3=
1
2
1
3
-
1
4
),

S2009=
1
2
×(
1
2009
-
1
2010
),
∴S1+S2+S3+…+S2009=
1
2
×(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2009
-
1
2010
),
=
1
2
×(1-
1
2010
)=
2009
4020

答:s1+s2+s3+…+s2009的值是
2009
4020
點(diǎn)評(píng):本題主要考查對(duì)三角形的面積,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn)的理解和掌握,能根據(jù)計(jì)算得出規(guī)律是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線ln:y=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2;…依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,S1+S2+…+S2009的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線lny=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1,(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2;…依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn.則△A1OB1的面積S1等于
 
;S1+S2+S3+S4+S5的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線ln:y=-
n+1
n
x+
1
n
(n是不為零的自然數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(其中O是平面直角坐標(biāo)系的原點(diǎn))的面積為S1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為S2,…,
依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn
(1)求設(shè)△A1OB1的面積S1;
(2)求S1+S2+S3+…+S6的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線ln:y=-
n+1
n
x+
1
n
(n是正整數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(O是平面直角坐標(biāo)系的原點(diǎn))的面積為s1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為s2,…,依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn
(1)求△A1OB1的面積s1;
(2)求s1+s2+s3+…+s2008的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線ln:y=-
n+1
n
x+
1
n
(n是正整數(shù)).當(dāng)n=1時(shí),直線l1:y=-2x+1與 x軸和y軸分別交于點(diǎn)A1和B1,設(shè)△A1OB1(O是平面直角坐標(biāo)系的原點(diǎn))的面積為s1;當(dāng)n=2時(shí),直線l2:y=-
3
2
x+
1
2
與x軸和y軸分別交于點(diǎn)A2和B2,設(shè)△A2OB2的面積為s2,…,依此類推,直線ln與x軸和y軸分別交于點(diǎn)An和Bn,設(shè)△AnOBn的面積為Sn
(1)求△A1OB1的面積s1
(2)求s1+s2+s3+…+s2011的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案