若實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列不等式成立的是

A.a(chǎn)c>bc            B.a(chǎn)b>cb            C.a(chǎn)+c>b+c          D.a(chǎn)+b>c+b

 

【答案】

B。

【解析】根據(jù)數(shù)軸判斷出a、b、c的正負(fù)情況,然后根據(jù)不等式的性質(zhì)解答:

由圖可知,a<b<0,c>0,

A、ac<bc,故本選項(xiàng)錯(cuò)誤;

B、ab>cb,故本選項(xiàng)正確;

C、a+c<b+c,故本選項(xiàng)錯(cuò)誤;

D、a+b<c+b,故本選項(xiàng)錯(cuò)誤。

故選B。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長(zhǎng)寧區(qū)二模)若實(shí)數(shù)x、y滿足:|x|>|y|,則稱:x比y遠(yuǎn)離0.如圖,已知A、B、C、D、E五點(diǎn)在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)分別是a、b、c、d、e.若從這五個(gè)數(shù)中隨機(jī)選一個(gè)數(shù),則這個(gè)數(shù)比其它數(shù)都遠(yuǎn)離0的概率是
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如3+2
2
=12+2
2
+(
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請(qǐng)你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0;
(3)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個(gè)不等實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請(qǐng)你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個(gè)不等實(shí)數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀下列材料,回答問題.
材料一:人們習(xí)慣把形如y=x+
k
x
(k>0)
的函數(shù)稱為“根號(hào)函數(shù)”,這類函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱.
材料二:對(duì)任意的實(shí)數(shù)a、b而言,a2-2ab+b2=(a-b)2≥0,即a2+b2≥2ab.
易知當(dāng)a=b時(shí),(a-b)2=0,即:a2-2ab+b2=0,所以a2+b2=2ab.
若a≠b,則(a-b)2>0,所以a2+b2>2ab.
材料三:如果一個(gè)數(shù)的平方等于m,那么這個(gè)數(shù)叫做m的平方根(square root).一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù).0的平方根是0,負(fù)數(shù)沒有平方根.
問題:
(1)若“根號(hào)函數(shù)”y=x+
1
x
在第一象限內(nèi)的大致圖象如圖所示,試在網(wǎng)格內(nèi)畫出該函數(shù)在第三象限內(nèi)的大致圖象;
(2)請(qǐng)根據(jù)材料二、三給出的信息,試說明:當(dāng)x>0時(shí),函數(shù)y=x+
1
x
的最小值為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

所謂配方法其實(shí)就是逆用完全平方公式,即.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如;=等等.請(qǐng)你用配方法解決以下問題:

1.解方程:;(不能出現(xiàn)形如的雙重二次根式)

2.)若,解關(guān)于x的一元二次方程;

3.求證:不論m為何值,解關(guān)于x的一元二次方程總有兩個(gè)不等實(shí)數(shù)根

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案