【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.
(1)1月1日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)
【答案】
(1)解:設乙的速度為x米/分鐘,
,
解得,x=10,
經(jīng)檢驗,x=10是原分式方程的解,
∴1.2x=12,
即甲的平均攀登速度是12米/分鐘;
(2)解:設丙的平均攀登速度是y米/分,
,
化簡,得
y= ,
∴甲的平均攀登速度是丙的: 倍,
即甲的平均攀登速度是丙的 倍.
【解析】(1)根據(jù)題意可以列出相應的分式方程,從而可以求得甲的平均攀登速度;(2)根據(jù)(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本題.
【考點精析】利用分式方程的應用對題目進行判斷即可得到答案,需要熟知列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=2x2向上平移3個單位,再向右平移2個單位,得到的拋物線是( 。
A.y=2(x+2)2﹣3B.y=2(x+2)2+3
C.y=2(x﹣2)2﹣3D.y=2(x﹣2)2+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線與y軸交于點D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市為迎接省運會,要將某一城市美化工程招標,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點M的坐標是(5,4),⊙M與y軸相切于點C,與x軸相交于A、B兩點.
(1)則點A、B、C的坐標分別是A(__,__),B(__,__),C(__,__);
(2)設經(jīng)過A、B兩點的拋物線解析式為,它的頂點為F,求證:直線FA與⊙M相切;
(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形.如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各題正確的是( )
A.由7x=4x﹣3移項得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括號、移項、合并同類項得x=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式;
(2)若α為銳角,tanα=,當AE取得最小值時,求正方形OEFG的面積;
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為:1?若能,求點P的坐標;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、O、B三點在同一條直線上,OD平分∠AOC,OE平分∠BOC.
(1)若∠BOC=62°,求∠DOE的度數(shù);
(2)若∠BOC=a°,求∠DOE的度數(shù);
(3)圖中是否有互余的角?若有請寫出所有互余的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com