如圖,已知二次函數(shù)的圖像過點A(-4,3),B(4,4).

 (1)求二次函數(shù)的解析式:

 (2)求證:△ACB是直角三角形;

 (3)若點P在第二象限,且是拋物線上的一動點,過點P作PH垂直x軸于點H,是否存在以P、H、D、為頂點的三角形與△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由。

 

 

 

【答案】

解:

(1)將A(-4,3),B(4,4)代人中,

     , 整理得:  解得

    ∴二次函數(shù)的解析式為:,即:。                         

(2)由 整理得 ,解得。

     ∴C (-2,0),D 。

     ∴AC2=4+9 ,BC2=36+16,AC2+ BC2=13+52=65,AB2=64+1=65,

     ∴ AC2+ BC2=AB2 !唷鰽CB是直角三角形。

(3)設(shè)(x<0),則PH=, HD=。

又∵AC=, BC=,

 ①當△PHD∽△ACB時有:,即:

整理得 ,解得(舍去),此時,。

    ∴。

 ②當△DHP∽△ACB時有:, 即:,

 整理  ,解得(舍去),此時,。

    ∴。

 綜上所述,滿足條件的點有兩個即,

【解析】二次函數(shù)綜合題,曲線上點的坐標與方程的關(guān)系,勾股定理和逆定理的應(yīng)用,相似三角形的判定性質(zhì),坐標系中點的坐標的特征,拋物線與x軸的交點,解一元二次方程和二元一次方程組。

【分析】(1)求二次函數(shù)的解析式,也就是要求中a、b的值,只要把A(-4,3),B(4,4)代人即可。

(2)求證△ACB是直角三角形,只要求出AC,BC,AB的長度,然后用勾股定理及其逆定理去考察。

(3)分兩種情況進行討論,①△DHP∽△BCA,②△PHD∽△BCA,然后分別利用相似三角形對應(yīng)邊成比例的性質(zhì)求出點P的坐標。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數(shù)的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(-2,0)和點C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為
6
7
,0)
6
7
,0)
;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設(shè)P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的頂點C的坐標;
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案