如圖示,AB+BC>AC,其理由是__________。

兩點(diǎn)之間線段最短
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、在△ABC中,借助作圖工具可以作出中位線EF,沿著中位線EF一刀剪切后,用得到的△AEF和四邊形EBCF可以拼成平行四邊形EBCP,剪切線與拼圖如圖示1,仿上述的方法,按要求完成下列操作設(shè)計(jì),并在規(guī)定位置畫(huà)出圖示.
(1)在△ABC中,增加條件
∠B=90°
,沿著
中位線EF
一刀剪切后可以拼成矩形,剪切線與拼圖畫(huà)在圖示2的位置;
(2)在△ABC中,增加條件
AB=2BC
,沿著
中位線EF
一刀剪切后可以拼成菱形,剪切線與拼圖畫(huà)在圖示3的位置;
(3)在△ABC中,增加條件
∠B=90°且AB=2BC
,沿著
中位線EF
一刀剪切后可以拼成正方形,剪切線與拼圖畫(huà)在圖示4的位置;
(4)在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要確定剪切線,其操作過(guò)程(剪切線的作法)是:
不妨設(shè)∠B>∠C,在BC邊上取一點(diǎn)D,作∠GDB=∠B交AB于G,過(guò)AC的中點(diǎn)E作EF∥GD交BC于F,則EF為剪切線。
,然后,沿著剪切線一刀剪切后可以拼成等腰梯形,剪切線與拼圖畫(huà)在圖示5的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖示,正方形ABCD中,E、F分別在AB、BC上,AC、BD交于O點(diǎn)且AC⊥BD,∠EOF=90°,已知AE=3,CF=4,則S△BEF
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖示:一幅三角板如圖放置,等腰直角三角形固定不動(dòng),另一塊的直角頂點(diǎn)放在等腰直角三角形的斜邊中點(diǎn)D處,且可以繞點(diǎn)D旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,兩直角邊與AB、CB的交點(diǎn)為G、H
(1)當(dāng)三角板DEF旋轉(zhuǎn)至圖1所示時(shí),你能發(fā)現(xiàn)線段BG和CH大小有何關(guān)系?證明你的結(jié)論.
(2)若在旋轉(zhuǎn)過(guò)程中,兩直角邊的交點(diǎn)G、H始終在邊AB、CB上,AB=CB=4cm,在旋轉(zhuǎn)過(guò)程中四邊形GBHD的面積是否不變,若不變,求出它的值,若變,求出它的取值范圍.
(3)當(dāng)三角板DEF旋轉(zhuǎn)至圖2所示時(shí),三角板DEF與AB、BC邊所在的直線相交于點(diǎn)G、H時(shí),(1)的結(jié)論仍然成立嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖示:一幅三角板如圖放置,等腰直角三角形固定不動(dòng),另一塊的直角頂點(diǎn)放在等腰直角三角形的斜邊中點(diǎn)D處,且可以繞點(diǎn)D旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,兩直角邊與AB、CB的交點(diǎn)為G、H
(1)當(dāng)三角板DEF旋轉(zhuǎn)至圖1所示時(shí),你能發(fā)現(xiàn)線段BG和CH大小有何關(guān)系?證明你的結(jié)論.
(2)若在旋轉(zhuǎn)過(guò)程中,兩直角邊的交點(diǎn)G、H始終在邊AB、CB上,AB=CB=4cm,在旋轉(zhuǎn)過(guò)程中四邊形GBHD的面積是否不變,若不變,求出它的值,若變,求出它的取值范圍.
(3)當(dāng)三角板DEF旋轉(zhuǎn)至圖2所示時(shí),三角板DEF與AB、BC邊所在的直線相交于點(diǎn)G、H時(shí),(1)的結(jié)論仍然成立嗎?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案