精英家教網 > 初中數學 > 題目詳情

如圖,A、C、B三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結論的個數是


  1. A.
    3個
  2. B.
    2個
  3. C.
    1個
  4. D.
    0個
B
分析:根據等邊三角形的性質和全等三角形的判定與性質采用排除法對各個結論進行分析從而得出答案.
解答:∵△DAC和△EBC都是等邊三角形
∴AC=CD,CE=BC,∠ACD=∠ECB=60°
∴∠ACE=∠DCB
∴△ACE≌△DCB(SAS)(①正確)
∴∠AEC=∠DBC
∵∠DCE+∠ACD+∠ECB=180°,∠ACD=∠ECB=60°
∴∠DCE=∠ECB=60°
∵CE=BC,∠DCE=∠ECB=60°,∠AEC=∠DBC
∴△EMC≌△BNC(ASA)
∴CM=CN(②正確)
∵AC=DC 在△DNC中,DC所對的角為∠DNC=∠NCB+∠NBC=60°+∠NBC>60°,而DN所對的角為60°,根據三角形中等邊對等角、大邊對大角,小邊對小角的規(guī)律,則DC>DN,即是AC>DN,所以③錯誤,所以正確的結論有兩個.
故選B.
點評:考查了等邊三角形的性質及全等三角形的判定方法,要求學生做題時要能靈活運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

9、如圖,A、C、E三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結論的個數是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

15、如圖,A、Q、R三點在一條直線上,S為直線外一點,∠AQS=136°,∠QRS=64°,則∠QSR=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,A,B,C三點在同一平面內,從山腳纜車站A測得山頂C的仰角為45°,測得另一纜精英家教網車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,A、B、C三點在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,A,O,B三點在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關系?為什么?

查看答案和解析>>

同步練習冊答案