【題目】下表是某網(wǎng)約車公司的專車計價規(guī)則.

計費項目

起租價

里程費

時長費

遠途費

單價

15

25/公里

15/

1/公里

:車費由起租價、里程費、時長費、遠途費四部分構成,其中起租價15元含10分鐘時長費和5公里里程費,遠途費的收取方式為:行車里程10公里以內(10公里)不收遠途費,超過10公里的,超出部分每公里收1元.

(1)若小李乘坐專車,行車里程為20公里,行車時間為30分,則需付車費_______元.

(2)若小李乘坐專車,行車里程為公里,平均時速為,則小李應付車費多少元? (用含的代數(shù)式表示)

(3)小李與小王各自乘坐專車,行車車費之和為76元,里程之和為15公里(其中小王的行車里程不超過5公里).如果行駛時間均為 20分鐘,那么這兩輛專車此次的行駛路程各為多少公里?

【答案】(1)92.5元;(2)小李應付車費元;(3)小王和小李乘坐的這兩輛專車此次的行駛路程分別為4公里和11公里.

【解析】

1)根據(jù)題意分別算出起租價、里程費、時長費和遠途費,相加即可得出答案;

2)先計算小李乘坐專車的時長,再計算出里程費和時長費,最后再加上起租價計算即可得出答案;

3)先分別設出小王和小李的里程,再根據(jù)行車車費之和為76列出等式,解方程即可得出答案.

解:(1)根據(jù)題意可得:15+(20-5)×2.5+10×1+(30-10)×1.5=92.5()

∴需付車費92.5元.

2 , 平均時速為

小李乘坐專車的時間為: (分鐘)

則小李應付車費為:

元,

答:小李應付車費元.

3)設小王的行車里程為公里,則小李的行車里程為公里.

∵小王的行車里程不超過5公里,且小王、小李行車里程之和為15公里

依題意有:

解得: 且合乎題意

∴小李行車里程為公里

答:小王和小李乘坐的這兩輛專車此次的行駛路程分別為4公里和11公里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】,平分,平分于點,且,則的長為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,連接為射線上的一個動點(與點不重合),連接,的垂直平分線交線段于點,連接,.

提出問題:當點運動時,的度數(shù)是否發(fā)生改變?

探究問題:

1)首先考察點的兩個特殊位置:

當點與點重合時,如圖1所示,____________

時,如圖2所示,中的結論是否發(fā)生變化?直接寫出你的結論:__________;(填變化不變化

2)然后考察點的一般位置:依題意補全圖3,圖4,通過觀察、測量,發(fā)現(xiàn):(1)中的結論在一般情況下_________;(填成立不成立

3)證明猜想:若(1)中的結論在一般情況下成立,請從圖3和圖4中任選一個進行證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在 數(shù)軸上對應的數(shù)分別用表示,且.是數(shù)軸的一動點.

⑴在數(shù)軸上標出的位置,并求出之間的距離;

⑵數(shù)軸上一點點24個單位的長度,其對應的數(shù)滿足,當點滿足時,求點對應的數(shù).

⑶動點從原點開始第一次向左移動1個單位,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,……點能移動到與重合的位置嗎?若能,請?zhí)骄康趲状我苿訒r重合;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價元,乒乓球每盒定價元,經(jīng)洽談后,甲店每買一-副球拍贈一盒乒乓球,乙店全部按定價的折優(yōu)惠.該班需買球拍副,乒乓球若干盒(不小于).

(1)當購買乒乓球多少盒時,在兩店購買付款一樣?

(2)如果給你元,讓你選擇- -家商店去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

(1)①在“平行四邊形、矩形、菱形”中, 一定是等角線四邊形(填寫圖形名稱);

M、NP、Q分別是等角線四邊形ABCD四邊AB、BC、CDDA的中點,當對角線ACBD還要滿足 時,四邊形MNPQ是正方形.

(2)如圖2,已知ABC中,ABC=90°,AB=4,BC=3,D為平面內一點.

若四邊形ABCD是等角線四邊形,且AD=BD,則四邊形ABCD的面積是 ;

設點E是以C為圓心,1為半徑的圓上的動點,若四邊形ABED是等角線四邊形,寫出四邊形ABED面積的最大值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,點邊上一點,連接,把沿折疊,使點落在點處,當為直角三角形時,的長為(

A. 3B. C. 23D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,長方形的三個頂點的坐標為,,,且軸,點是長方形內一點(不含邊界).

1)求的取值范圍.

2)若將點向左移動8個單位,再向上移動2個單位到點,若點恰好與點關于軸對稱,求,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種節(jié)能型轎車的油箱加滿天然氣后,油箱中的剩余天然氣量(升)與轎車行駛路程(千米)之間的關系如圖所示,根據(jù)圖象回答下列問題:

1)這種轎車的油箱最多能裝______升天然氣,加滿天然氣后可供轎車行駛______千米.

2)轎車每行駛200千米消耗天然氣________.

3)寫出之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案