考點(diǎn):二次根式的性質(zhì)與化簡(jiǎn)
專(zhuān)題:
分析:由n是正整數(shù),
為有理數(shù)當(dāng)且僅當(dāng)(n+7)•
=
為有理數(shù).而(9n-1)(n+7)是整數(shù),其平方根若為有理數(shù)則必為整數(shù).
即有1024=(9n+31)
2-9m
2=(9n+31+3m)(9n+31-3m).9n+31+3m是1024的約數(shù).n是正整數(shù),m是非負(fù)整數(shù),故9n+31+3m是大于31的整數(shù).此外,易見(jiàn)9n+3m+31除以3余1.滿(mǎn)足條件的1024的約數(shù)有64,256,1024.再求即可.
解答:解:由n是正整數(shù),
為有理數(shù)當(dāng)且僅當(dāng)(n+7)•
=
為有理數(shù).
而(9n-1)(n+7)是整數(shù),其平方根若為有理數(shù)則必為整數(shù).
設(shè)非負(fù)整數(shù)m滿(mǎn)足m
2=(9n-1)(n+7)=9n
2+62n-7.
則9m
2=(9n)
2+62(9n)-63=(9n+31)
2-31
2-63=(9n+31)
2-1024.
即有1024=(9n+31)
2-9m
2=(9n+31+3m)(9n+31-3m).
9n+31+3m是1024的約數(shù).
n是正整數(shù),m是非負(fù)整數(shù),故9n+31+3m是大于31的整數(shù).
此外,易見(jiàn)9n+3m+31除以3余1.
滿(mǎn)足條件的1024的約數(shù)有64,256,1024.
若9n+31+3m=64,有9n+31-3m=
=16,解得n=1.
若9n+31+3m=256,有9n+31-3m=
=4,解得n=11.
若9n+31+3m=1024,有9n+31-3m=
=1,解不為整數(shù).
可驗(yàn)證n=1時(shí)
=1,n=11時(shí)
=
為有理數(shù).
故滿(mǎn)足條件的正整數(shù)為1,11.
點(diǎn)評(píng):本題考查了二次根式的性質(zhì)與化簡(jiǎn).關(guān)鍵是得出9n+31+3m是1024的約數(shù).n是正整數(shù),m是非負(fù)整數(shù),故9n+31+3m是大于31的整數(shù).