【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如下圖1,2,他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 289 B. 1225 C. 1024 D. 1378
【答案】B
【解析】
圖1中求出1、3、6、10,…,第n個圖中點(diǎn)的個數(shù)是1+2+3+…+n,即;圖2中1、4、9、16,…,第n個圖中點(diǎn)的個數(shù)是n2.然后把各數(shù)分別代入,若解出的n是正整數(shù),則說明符合條件就是所求.
根據(jù)題意得:三角形數(shù)的第n個圖中點(diǎn)的個數(shù)為;
正方形數(shù)第n個圖中點(diǎn)的個數(shù)為n2.
A、令=289,解得:n= (不合題意,舍去);再令n2=289,n=±17;不符合條件,錯誤;
B.令=1225,解得n1=49,n2=﹣50(不合題意,舍去);再令n2=1225,n1=35,n2=﹣35(不合題意,舍去),符合條件,正確.
C.令=1024,解得:n=(都不合題意,舍去);再令n2=1024,n=±32;不符合條件,錯誤;
D.令=1378,解得n1=52,n2=﹣53(不合題意,舍去);再令n2=1378,n= (不合題意,舍去),不符合條件,錯誤.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中顯示了10名同學(xué)平均每周用于閱讀課外書的時間和用于看電視的時間(單位:小時)。
(1)用有序?qū)崝?shù)對表示圖中各點(diǎn)。
(2)圖中有一個點(diǎn)位于方格的對角線上,這表示什么意思?
(3)圖中方格紙的對角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?
(4)估計(jì)一下你每周用于閱讀課外書的時間和用于看電視的時間,在圖上描出來,這個點(diǎn)位于什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽是熾熱巨大的氣體星球,正以每秒萬噸的速度失去重量.太陽的直徑約為萬千米,而地球的半徑約為千米.請將上述三個數(shù)據(jù)用科學(xué)記數(shù)法表示,然后計(jì)算:
(1)在一年內(nèi)太陽要失去多少萬噸重量?
(2)在太陽的直徑上能擺放多少個地球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(0,1),且過點(diǎn)(﹣1, ),直線y=kx+2與y軸相交于點(diǎn)P,與二次函數(shù)圖象交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2). (注:在解題過程中,你也可以閱讀后面的材料)
附:閱讀材料
任何一個一元二次方程的根與系數(shù)的關(guān)系為:兩根的和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)的比的相反數(shù),兩根的積等于常數(shù)項(xiàng)與二次項(xiàng)系數(shù)的比.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1 , x2 ,
則:x1+x2=﹣ ,x1x2=
能靈活運(yùn)用這種關(guān)系,有時可以使解題更為簡單.
例:不解方程,求方程x2﹣3x=15兩根的和與積.
解:原方程變?yōu)椋簒2﹣3x﹣15=0
∵一元二次方程的根與系數(shù)有關(guān)系:x1+x2=﹣ ,x1x2=
∴原方程兩根之和=﹣ =3,兩根之積= =﹣15.
(1)求該二次函數(shù)的解析式.
(2)對(1)中的二次函數(shù),當(dāng)自變量x取值范圍在﹣1<x<3時,請寫出其函數(shù)值y的取值范圍;(不必說明理由)
(3)求證:在此二次函數(shù)圖象下方的y軸上,必存在定點(diǎn)G,使△ABG的內(nèi)切圓的圓心落在y軸上,并求△GAB面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請連接BD,OB,OC,OD,且OD交BC于點(diǎn)F,若點(diǎn)F恰好是OD的中點(diǎn).求證:四邊形OBDC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把 (a≠0)記作 a,讀作“a的圈n次方”.
初步探究
(1)直接寫出計(jì)算結(jié)果:2③=________,=________;
(2)關(guān)于除方,下列說法錯誤的是________
A.任何非零數(shù)的圈2次方都等于1; B.對于任何正整數(shù)n,1=1;
C.3④=4③ ; D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).
深入思考
我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
(1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.
(﹣3)④=________;5⑥=________;=________.
(2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于________;
(3)算一算:24÷23+(-16)×2④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.
(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com