【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點(diǎn)M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.3個(gè)以上

【答案】D
【解析】解:如圖在OA、OB上截取OE=OF=OP,作∠MPN=60°.
∵OP平分∠AOB,
∴∠EOP=∠POF=60°,
∵OP=OE=OF,
∴△OPE,△OPF是等邊三角形,
∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN,
在△PEM和△PON中,
,
∴△PEM≌△PON.
∴PM=PN,∵∠MPN=60°,
∴△PNM是等邊三角形,
∴只要∠MPN=60°,△PMN就是等邊三角形,
故這樣的三角形有無(wú)數(shù)個(gè).
故選D.
如圖在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要證明△PEM≌△PON即可推出△PMN是等邊三角形,由此即可對(duì)稱結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是高,在線段DC上取一點(diǎn)E,使DE=BD,已知AB+BD=DC. 求證:E點(diǎn)在線段AC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2﹣2x﹣3=0的根的情況是(
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)根
D.有一個(gè)實(shí)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的多項(xiàng)式中,能因式分解的是( 。
A.m2﹣2m+1
B.m2﹣m+1
C.m2﹣n
D.m2+n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式不能分解因式的是( 。
A.3x2﹣4x
B.x2+y2
C.x2+2x+1
D.9﹣x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,AD∥BC,DB=DC=EC,∠A=2∠ADB,AD=m,AB=n.

(1)在圖1中找出與∠ABD相等的角,并加以證明;

(2)求BE的長(zhǎng);

(3)將△ABD沿BD翻折,得到△A′BD.若點(diǎn)A′恰好落在EC上(如圖2),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(-3+a,2a+9)y軸上,則點(diǎn)A的坐標(biāo)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵的開(kāi)通,給N市市民出行帶來(lái)了極大的方便,“元旦”期間,甲、乙兩人應(yīng)邀到A市的藝術(shù)館參加演出,甲乘私家車從N市出發(fā)1小時(shí)后,乙乘坐高鐵從N市出發(fā),先到A市火車站,然后再轉(zhuǎn)乘出租車到A市的藝術(shù)館(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)A市的藝術(shù)館,他們離開(kāi)N市的距離y(千米)與乘車時(shí)間x(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)高鐵的平均速度是每小時(shí)多少千米?

(2)分別求甲、乙(乘坐高鐵時(shí))兩人離開(kāi)N市的距離y與乘車時(shí)間x的函數(shù)關(guān)系式;

(3)若甲要提前30分鐘到達(dá)藝術(shù)館,那么私家車的速度必須達(dá)到多少千米/小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案