閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;

這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為_(kāi)_____;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.
【答案】分析:仔細(xì)閱讀材料,根據(jù)絕對(duì)值的意義,畫出圖形,來(lái)解答.
解答:解:(1)根據(jù)絕對(duì)值得意義,方程|x+3|=4表示求在數(shù)軸上與-3的距離為4的點(diǎn)對(duì)應(yīng)的x的值為1或-7.(3分)

(2)∵3和-4的距離為7,
因此,滿足不等式的解對(duì)應(yīng)的點(diǎn)3與-4的兩側(cè).
當(dāng)x在3的右邊時(shí),如圖,

易知x≥4.(5分)
當(dāng)x在-4的左邊時(shí),如圖,

易知x≤-5.(7分)
∴原不等式的解為x≥4或x≤-5(8分)

(3)原問(wèn)題轉(zhuǎn)化為:a大于或等于|x-3|-|x+4|最大值.(9分)
當(dāng)x≥3時(shí),|x-3|-|x+4|應(yīng)該恒等于-7,
當(dāng)-4<x<3,|x-3|-|x+4|=-2x-1隨x的增大而減小,
當(dāng)x≤-4時(shí),|x-3|-|x+4|=7,
即|x-3|-|x+4|的最大值為7.(11分)
故a≥7.(12分)
點(diǎn)評(píng):本題是一道材料分析題,通過(guò)閱讀材料,同學(xué)們應(yīng)當(dāng)深刻理解絕對(duì)值得幾何意義,結(jié)合數(shù)軸,通過(guò)數(shù)形結(jié)合對(duì)材料進(jìn)行分析來(lái)解答題目.由于信息量較大,同學(xué)們不要產(chǎn)生畏懼心理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

28、閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;
這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為
1或-7
;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:
已知三個(gè)數(shù)a、b、c,我們可以用M(a,b,c)表示這三個(gè)數(shù)的平均數(shù),用max(a,b,c)表示這三個(gè)數(shù)中最大的數(shù).
例如:M(-2,1,5)=
-2+1+5
3
=
4
3
; max(-2,1,5)=5;max(-2,1,a)=
a(a≥1)
1(a<1)

解決下列問(wèn)題:
(1)填空:①M(fèi)(-3,-2,10)=
 
;
②max(tan30°,sin45°,cos60°)=
 

③如果max(2,2-2a,2a-4)=2,那么a的取值范圍是
 
;
(2)如果M(2,a+1,2a)=max(2,a+1,2a),求a的值;
(3)請(qǐng)你根據(jù)(2)的結(jié)果,繼續(xù)探究:如果M(a,b,c)=max(a,b,c),那么
 
(填a、b、c的大小關(guān)系),并證明你的結(jié)論;
(4)運(yùn)用(3)的結(jié)論填空:
如果M(2a+b+2,a+2b,2a-b)=max(2a+b+2,a+2b,2a-b),那么a+b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•郴州)閱讀下列材料:
    我們知道,一次函數(shù)y=kx+b的圖象是一條直線,而y=kx+b經(jīng)過(guò)恒等變形可化為直線的另一種表達(dá)形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)P(m,n)到直線l:Ax+By+C=0的距離(d)計(jì)算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求點(diǎn)P(1,2)到直線y=
5
12
x-
1
6
的距離d時(shí),先將y=
5
12
x-
1
6
化為5x-12y-2=0,再由上述距離公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列問(wèn)題:
    如圖2,已知直線y=-
4
3
x-4
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=x2-4x+5上的一點(diǎn)M(3,2).
    (1)求點(diǎn)M到直線AB的距離.
    (2)拋物線上是否存在點(diǎn)P,使得△PAB的面積最?若存在,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:已知方程x2+x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化簡(jiǎn),得y2+2y-12=0.
故所求方程為y2+2y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
問(wèn)題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:我們?cè)趯W(xué)習(xí)二次根式時(shí),式子
x
有意義,則x≥0;式子
-x
有意義,則x≤0;若式子
x
+
-x
有意義,求x的取值范圍;這個(gè)問(wèn)題可以轉(zhuǎn)化為不等式組來(lái)解決,即求關(guān)于x的不等式組
x≥0
-x≤0
的解集,解這個(gè)不等式組得x=0.請(qǐng)你運(yùn)用上述的數(shù)學(xué)方法解決下列問(wèn)題:
(1)式子
x2-1
+
1-x2
有意義,求x的取值范圍;
(2)已知:y=
x-2
+
2-x
-3
,求xy的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案