某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為xm,短邊為ym,工程總造價(jià)為w元.
(1)寫(xiě)出x的取值范圍;
(2)寫(xiě)出y與x的函數(shù)關(guān)系式;
(3)寫(xiě)出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫(xiě)出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):
3
≈1.732)
(1)∵50≤100-2x≤60,
∴20≤x≤25;

(2)由于四周出口一樣寬,100-2x=80-2y,即:y=x-10;

(3)w=4xy×50+(100×80-4xy)×60
=480000-40xy
=480000-40x(x-10)
∴w=-40x2+400x+480000;

(4)能夠完成工程任務(wù).
理由:當(dāng)w=469000時(shí)
-40x2+400x+480000=469000
即x2-10x-275=0解得x1=5+10
3
,x2=5-10
3

∵x>0
∴x=5+10
3
≈22.32
因?yàn)閤增大,綠化區(qū)面積會(huì)增大,從而活動(dòng)區(qū)面積會(huì)減小,工程總造價(jià)會(huì)降低,
所以整數(shù)x應(yīng)滿(mǎn)足22<x≤25.
所以,能夠完成工程任務(wù),符合條件的所有工程方案有如下三個(gè):
①綠化區(qū)長(zhǎng)邊為23m,短邊為13m;
②綠化區(qū)長(zhǎng)邊為24m,短邊為14m;
③綠化區(qū)長(zhǎng)邊為25m,短邊為15m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,拋物線(xiàn)c1經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線(xiàn)c1解析式;
(2)求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似,如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由;
(4)設(shè)拋物線(xiàn)c1的對(duì)稱(chēng)軸與x軸交于點(diǎn)F,另一條拋物線(xiàn)c2經(jīng)過(guò)點(diǎn)E(拋物線(xiàn)c2與拋物線(xiàn)c1不重合),且頂點(diǎn)為M(a,b),對(duì)稱(chēng)軸與x軸相交于點(diǎn)G,且以M,G,E為頂點(diǎn)的三角形與以D,E,F(xiàn)為頂點(diǎn)的三角形全等,求a,b的值.(只需寫(xiě)出結(jié)果,不必寫(xiě)出解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

松花江大橋的一個(gè)橋拱為拋物線(xiàn)形狀,拱頂A離橋面50m,橋面上拱形鋼梁之間的距離BC=120m,建立如圖所示的直角坐標(biāo)系.
(1)寫(xiě)出A,B,C三點(diǎn)的坐標(biāo);
(2)求該拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上OB=
3
,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點(diǎn)O與點(diǎn)D重合,折痕為BE.
(1)求點(diǎn)E和點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、A三點(diǎn)的二次函數(shù)解析式;
(3)設(shè)直線(xiàn)BE與(2)中二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)F,M為OF中點(diǎn),N為AF中點(diǎn),在x軸上是否存在點(diǎn)P,使△PMN的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種產(chǎn)品的年產(chǎn)量不超過(guò)1000噸,該產(chǎn)品的年產(chǎn)量(單位:噸)與費(fèi)用(單位:萬(wàn)元)之間函數(shù)的圖象是頂點(diǎn)在原點(diǎn)的拋物線(xiàn)的一部分(如圖1);該產(chǎn)品的年銷(xiāo)售量(單位:噸)與銷(xiāo)售單價(jià)(單位:萬(wàn)元/噸)之間函數(shù)的圖象是線(xiàn)段(如圖2),若生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,則年產(chǎn)量是多少?lài)崟r(shí),所獲毛利潤(rùn)最大,最大利潤(rùn)是多少(毛利潤(rùn)=銷(xiāo)售額-費(fèi)用).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,等腰直角三角形ABC的斜邊AB所在的直線(xiàn)上有E,F(xiàn)兩點(diǎn),且∠E+∠F=45°,AE=3,設(shè)AB=x,BF=y,則y與x的函數(shù)關(guān)系式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用長(zhǎng)為6m的鋁合金型材做一個(gè)形狀如圖所示的矩形窗框,要使做成的窗框的透光面積最大,則該窗的長(zhǎng),寬應(yīng)分別做成( 。
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某水果批發(fā)商場(chǎng)銷(xiāo)售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

徒駭河大橋是我市第一座特大型橋梁,大橋橋體造型新穎,氣勢(shì)恢宏,兩條拱肋如長(zhǎng)虹臥波,極具時(shí)代氣息(如圖①).大橋?yàn)橹谐惺綉宜鞴皹,大橋的主拱肋ACB是拋物線(xiàn)的一部分(如圖②),跨徑AB為100m,拱高OC為25m,拋物線(xiàn)頂點(diǎn)C到橋面的距離為17m.
(1)請(qǐng)建立適當(dāng)?shù)淖鴺?biāo)系,求該拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)七月份汛期來(lái)臨,河水水位上漲,假設(shè)水位比AB所在直線(xiàn)高出1.96m,這時(shí)位于水面上的拱肋的跨徑是多少?在不計(jì)橋面厚度的情況,一條高出水面4.6m的游船是否能夠順利通過(guò)大橋?

查看答案和解析>>

同步練習(xí)冊(cè)答案