12、如圖,已知⊙O1與⊙O2相交于點(diǎn)A、B,過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長(zhǎng).
分析:(1)連接AB.根據(jù)弦切角定理可得∠BAC=∠D,而∠BAC和∠E是同弧所對(duì)的圓周角,由此可證得AD、EC所在直線的內(nèi)錯(cuò)角相等,即可得證;
(2)由于PA是⊙O1的切線,由切割線定理可求得PB的長(zhǎng).而AD是⊙O2的切線,同樣可根據(jù)切割線定理求得AD的長(zhǎng).
解答:解:(1)連接AB.
因?yàn)锳C是⊙O1的切線,
所以∠BAC=D.
又因?yàn)椤螧AC=∠E,
所以∠D=∠E,
所以AD∥CE.

(2)因?yàn)镻A是⊙O1的切線,
所以PA2=PB•(PB+BD).
即62=PB•(PB+9),
解,得PB=3,PB=-12(舍去).
又AD是☉O2的切線,
所以AD2=DB•DE=9×16,
即AD=12.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)有:弦切角定理、圓周角定理及切割線定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),連心線O1O2交⊙O1于C、D兩點(diǎn),直線CA交⊙O2于點(diǎn)P,直線PD交⊙O1于點(diǎn)Q,且CP∥QB,求證:AC=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O1與⊙O2是等圓,直線CF順次交兩圓于C、D、E、F,且CF交O1O2于點(diǎn)M.需要添加上一個(gè)條件,(只填寫一個(gè)條件,不添加輔精英家教網(wǎng)助線或另添字母),則M是線段O1O2的中點(diǎn),并說明理由.(說明理由時(shí)可添加輔助線或字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過A作⊙O1的切線交⊙O2于E,連接EB并延長(zhǎng)交⊙O1于C,直線CA交⊙O2于點(diǎn)D.
(1)當(dāng)A、D不重合時(shí),求證:AE=DE
(2)當(dāng)D與A重合時(shí),且BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O1與⊙O2相交于點(diǎn)A、B,AB=8,O1O2=1,⊙O1的半徑長(zhǎng)為5,那么⊙O2的半徑長(zhǎng)為
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過⊙O1的圓心O1,且兩圓相交于A,B兩點(diǎn),C為⊙O2上的點(diǎn),連接AC交⊙O1于D點(diǎn),再連接BC,BD,AO1,AO2,O1O2,有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案