【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來,移動支付已成為主要的支付方式之一,為了解某校學生上個月兩種移動支付方式的使用情況,從全校名學生中隨機抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學生的支付金額(元)的分布情況如下:
支付金額(元) 支付方式 | |||
僅使用 | 人 | 人 | 人 |
僅使用 | 人 | 人 | 人 |
下面有四個推斷:
①從樣本中使用移動支付的學生中隨機抽取一名學生,該生使用A支付方式的概率大于他使用B支付方式的概率;
②根據(jù)樣本數(shù)據(jù)估計,全校1000名學生中.同時使用A、B兩種支付方式的大約有400人;
③樣本中僅使用A種支付方式的同學,上個月的支付金額的中位數(shù)一定不超過1000元;
④樣本中僅使用B種支付方式的同學,上個月的支付金額的平均數(shù)一定不低于1000元.其中合理的是( )
A.①③B.②④C.①②③D.①②③④
【答案】C
【解析】
由題意根據(jù)概率公式、樣本估計總體思想的運用、中位數(shù)和平均數(shù)的定義逐一判斷可得.
解:①從樣本中使用移動支付的學生中隨機抽取一名學生,該生使用A支付方式的概率為
,使用B支付方式的概率為,此推斷合理;
②根據(jù)樣本數(shù)據(jù)估計,全校1000名學生中,同時使用A,B兩種支付方式的大約有(人),此推斷合理;
③樣本中僅使用A種支付方式的同學,第15、16個數(shù)據(jù)均落在0<a≤1000,所以上個月的支付金額的中位數(shù)一定不超過1000元,此推斷合理;
④樣本中僅使用B種支付方式的同學,上個月的支付金額的平均數(shù)無法估計,此推斷不正確.
故推斷正確的有①②③.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,點從點出發(fā)以的速度沿折線運動,點從點出發(fā)以的速度沿運動,,兩點同時出發(fā),當某一點運動到點時,兩點同時停止運動.設運動時間為,的面積為,關于的函數(shù)圖像由,兩段組成,如圖2所示.
(1)求的值;
(2)求圖2中圖像段的函數(shù)表達式;
(3)當點運動到線段上某一段時的面積,大于當點在線段上任意一點時的面積,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是⊙O直徑AB上一定點,點C是直徑AB上一個動點,過點作交⊙O于點,作射線DM交⊙O于點N,連接BD.
小勇根據(jù)學習函數(shù)的經(jīng)驗,對線段AC,BD,MN的長度之間的數(shù)量關系進行了探究.
下面是小勇的探究過程,請補充完整:
(1)對于點C在AB的不同位置,畫圖,測量,得到了線段AC,BD,MN的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AC/cm | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
BD/cm | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | 0.00 |
MN/cm | 4.00 | 3.27 | 2.83 | 2.53 | 2.31 | 2.14 | 2.00 |
在AC,BD,MN的長度這三個量中,如果選擇________的長度為自變量,那么________的長度和________的長度為這個自變量的函數(shù);
(2)在同一平面直角坐標系xOy中,畫出(1)中確定的函數(shù)的圖象;
(3)結合函數(shù)圖象解決問題:當BD=MN時,線段AC的長度約為_____cm(結果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班甲、乙、丙三名同學20天的體溫數(shù)據(jù)記錄如下表:
甲的體溫 | 乙的體溫 | 丙的體溫 | ||||||||||||
溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 |
頻數(shù) | 5 | 5 | 5 | 5 | 頻數(shù) | 6 | 4 | 4 | 6 | 頻數(shù) | 4 | 6 | 6 | 4 |
則在這20天中,甲、乙、丙三名同學的體溫情況最穩(wěn)定的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,對于任意的實數(shù),直線都經(jīng)過平面內(nèi)一個定點.
(1)求點的坐標.
(2)反比例函數(shù)的圖象與直線交于點和另外一點
①求的值;
②當時,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB,過點A的射線l⊥AB.在射線l上截取線段AC=AB,連接BC,點M為BC的中點,點P為AB邊上一動點,點N為線段BM上一動點,以點P為旋轉(zhuǎn)中心,將△BPN逆時針旋轉(zhuǎn)90°得到△DPE,B的對應點為D,N的對應點為E.
(1)當點N與點M重合,且點P不是AB中點時,
①據(jù)題意在圖中補全圖形;
②證明:以A,M,E,D為頂點的四邊形是矩形.
(2)連接EM.若AB=4,從下列3個條件中選擇1個:
①BP=1,②PN=1,③BN=,
當條件 (填入序號)滿足時,一定有EM=EA,并證明這個結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,用①AB∥DC,②AD=BC,③∠A=∠C中的兩個作為題設,余下的一個作為結論.用“如果…,那么…“的形式,寫出一個真命題:在四邊形ABCD中,_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次綜合社會實踐活動中,小東同學從A處出發(fā),要到A地北偏東60°方向的C處,他先沿正東方向走了4千米到達B處,再沿北偏東15°方向走,恰能到達目的地C,如圖所示,則A、C兩地相距__千米.(結果精確到0.1千米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com