(2011•黔南州)如圖,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是( )

A.7+
B.10
C.4+2
D.12
【答案】分析:根據(jù)等腰三角形三線合一的性質(zhì),先求出BE,再利用中位線定理求出DE即可.
解答:解:∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中點,
∴BD=AB=3,
∴DE是△ABC的中位線,
∴DE=AC=3,
∴△BDE的周長為BD+DE+BE=3+3+4=10.
故選B.
點評:本題主要考查了三角形的中位線定理及勾股定理的運用,是中學(xué)階段的常規(guī)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省玉溪市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•黔南州)如圖,在平面直角坐標系中,點A的坐標為(1,),△AOB的面積是
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省黃山市祁門二中中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2011•黔南州)三角形兩邊長分別為3和6,第三邊是方程x2-6x+8=0的解,則這個三角形的周長是( )
A.11
B.13
C.11或13
D.不能確定

查看答案和解析>>

同步練習(xí)冊答案