若二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+f的圖象如圖,當(dāng)y1<y2時(shí),關(guān)于x的取值范圍,有可能是下列不等式組解中的哪一個(gè)( 。
分析:根據(jù)二次函數(shù)與不等式(組)的關(guān)系,結(jié)合圖象,得出y1<y2時(shí),x的取值范圍是-1<x<1;再找到不等式組中解為-1<x<1的選項(xiàng),即可求解.
解答:解:由圖形可以看出:
拋物線y1=ax2+bx+c和一次函數(shù)y2=kx+f(k≠0)的交點(diǎn)橫坐標(biāo)分別為-1,1,
當(dāng)y1<y2時(shí),x的取值范圍正好在兩交點(diǎn)之間,即-1<x<1.
而選項(xiàng)中只有A的不等式組的解為-1<x<1.
故選A.
點(diǎn)評(píng):本題考查了二次函數(shù)與不等式(組).此類題可用數(shù)形結(jié)合的思想進(jìn)行解答,這也是速解習(xí)題常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:二次函數(shù)y=x2+(n-2m)x+m2-mn.
(1)求證:此二次函數(shù)與x軸有交點(diǎn);
(2)若m-1=0,求證方程x2+(n-2m)x+m2-mn=0有一個(gè)實(shí)數(shù)根為1;
(3)在(2)的條件下,設(shè)方程x2+(n-2m)x+m2-mn=0的另一根為a,當(dāng)x=2時(shí),關(guān)于n 的函數(shù)y1=nx+am與y2=x2+(n-2m)ax+m2-mn的圖象交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),平行于y軸的直線L與y1=nx+am、y2=x2+(n-2m)ax+m2-mn的圖象分別交于點(diǎn)C、D,若
CD=6,求點(diǎn)C、D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)y1=ax2+bx+c(a>b>c)當(dāng)自變量x=1時(shí)函數(shù)值為0,一次函數(shù)y2=ax+b.
(1)求證:上述兩個(gè)函數(shù)圖象必有兩個(gè)不同的交點(diǎn);
(2)若二次函數(shù)圖象與x軸有一交點(diǎn)的橫坐標(biāo)為t,且t為奇數(shù)時(shí),求t的值.
(3)設(shè)上述兩函數(shù)圖象的交點(diǎn)A、B在x軸上的射影分別為A1,B1,求線段A1B1的長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)y1=ax2+bx+c(a>b>c)當(dāng)自變量x=1時(shí)函數(shù)值為0,一次函數(shù)y2=ax+b.
(1)求證:上述兩個(gè)函數(shù)圖象必有兩個(gè)不同的交點(diǎn);
(2)若二次函數(shù)圖象與x軸有一交點(diǎn)的橫坐標(biāo)為t,且t為奇數(shù)時(shí),求t的值.
(3)設(shè)上述兩函數(shù)圖象的交點(diǎn)A、B在x軸上的射影分別為A1,B1,求線段A1B1的長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點(diǎn)C(0,4),設(shè)拋物線的頂點(diǎn)為D。

(1)若拋物線經(jīng)過點(diǎn)(1,-6),求二次函數(shù)的解析式;

(2)若a=1時(shí),試判斷拋物線與x軸交點(diǎn)的個(gè)數(shù);

(3)如圖所示A、B是⊙P上兩點(diǎn),AB=8,AP=5。且拋物線過點(diǎn)A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動(dòng)點(diǎn)E(不與A、B重合),且∠AEB為銳角,若<a≤1時(shí),請(qǐng)判斷∠AEB與∠ADB的大小關(guān)系,并說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡中學(xué)高一新生入學(xué)數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)y1=ax2+bx+c(a>b>c)當(dāng)自變量x=1時(shí)函數(shù)值為0,一次函數(shù)y2=ax+b.
(1)求證:上述兩個(gè)函數(shù)圖象必有兩個(gè)不同的交點(diǎn);
(2)若二次函數(shù)圖象與x軸有一交點(diǎn)的橫坐標(biāo)為t,且t為奇數(shù)時(shí),求t的值.
(3)設(shè)上述兩函數(shù)圖象的交點(diǎn)A、B在x軸上的射影分別為A1,B1,求線段A1B1的長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案