【題目】如圖,在△ABC中,D、E分別是邊ABAC上的點(diǎn),DEBC,點(diǎn)F在線段DE上,過點(diǎn)FFGAB、FHAC分別交BC于點(diǎn)GH,如果BGGHHC243.求的值.

【答案】

【解析】

先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HCBGGHHC=243,可求得的值.

解:∵DEBC,∴∠ADE=B,

FGAB,

∴∠FGH=B,

∴∠ADE=FGH,

同理:∠AED=FHG,

∴△ADE∽△FGH,

,

DEBC FGAB,

DF=BG,

同理:FE=HC,

BGGHHC=243,

∴設(shè)BG=2k,GH=4kHC=3k,

DF=2k,FE=3k

DE=5k,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預(yù)測今年鳳凰茶葉能夠暢銷,就用32000元購進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批鳳凰茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價多了10元.

(1)該鳳凰茶葉公司兩次共購進(jìn)這種鳳凰茶葉多少千克?

(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E分別在邊ABAC上,DEBC,∠ACD=∠B,那么下列判斷中,不正確的是( 。

A. ADE∽△ABC B. CDE∽△BCD C. ADE∽△ACD D. ADE∽△DBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,

(1)求DE的長;

(2)過點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長;

(3)過點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進(jìn)行如下操作:

(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點(diǎn)在線段 AB 內(nèi)移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.

(2)如圖,當(dāng) D 點(diǎn)移到 AB 的中點(diǎn)時,請你猜想四邊形CDBF 的形狀,并說明理由.

(3)如圖,△DEF 的 D 點(diǎn)固定在 AB 的中點(diǎn),然后繞 D 點(diǎn)按順時針方向旋轉(zhuǎn)△DEF,使 DF 落在 AB 邊上,此時 F 點(diǎn)恰好與 B 點(diǎn)重合,連接 AE,請你求出 sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于點(diǎn)A.將直線向右平移6個單位后,與雙曲線交于點(diǎn)B,與x軸交于點(diǎn)C,若,則k的值為( 。

A. 12 B. 14 C. 18 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,點(diǎn)EAB邊上的一點(diǎn),點(diǎn)F為對角線BD上的一點(diǎn),且EFAB.若四邊形ABCD為正方形.

①如圖1,請直接寫出AEDF的數(shù)量關(guān)系   ;

②將△EBF繞點(diǎn)B逆時針旋轉(zhuǎn)到圖2所示的位置,連接AE,DF,猜想AEDF的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,迎賓公園的噴水池邊上有半圓形的石頭(半徑為1.12m)作為裝飾,其中一塊石頭正前方5.88m處有一彩燈,某一時刻,該燈柱落在此半圓形石頭上的影長為0.56πm.如果同一時刻,一直立0.6m的桿子的影長為1.8m,則燈柱的高____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+2m﹣1x+m2﹣1經(jīng)過坐標(biāo)原點(diǎn),且當(dāng)x0時,yx的增大而減。

1)求拋物線的解析式,并寫出y0時,對應(yīng)x的取值范圍;

2)設(shè)點(diǎn)A是該拋物線上位于x軸下方的一個動點(diǎn),過點(diǎn)Ax軸的平行線交拋物線于另一點(diǎn)D,再作AB⊥x軸于點(diǎn)B,DC⊥x軸于點(diǎn)C

當(dāng)BC=1時,直接寫出矩形ABCD的周長;

設(shè)動點(diǎn)A的坐標(biāo)為(ab),將矩形ABCD的周長L表示為a的函數(shù)并寫出自變量的取值范圍,判斷周長是否存在最大值?如果存在,求出這個最大值,并求出此時點(diǎn)A的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案