【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).
【答案】(1), , (2)存在P的坐標(biāo)是或(3)當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(, )或(, )
【解析】試題分析:(1)根據(jù)題意得出答案;(2)分以點(diǎn)C為直角頂點(diǎn)和點(diǎn)A為直角頂點(diǎn)兩種情況分別進(jìn)行計(jì)算;兩種情況都根據(jù)等腰直角三角形的性質(zhì)得出點(diǎn)的坐標(biāo);(3)根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短,根據(jù)OC=OA=3,OD⊥AC得出 D是AC的中點(diǎn),從而得出點(diǎn)P的縱坐標(biāo),然后根據(jù)題意得出方程,從而求出點(diǎn)P的坐標(biāo).
試題解析:(1),, (-1,0).
(2)存在.
第一種情況,當(dāng)以C為直角頂點(diǎn)時(shí),過點(diǎn)C作CP1⊥AC,交拋物線于點(diǎn)P1.過點(diǎn)P1作y軸的垂線,垂足是M.
∵OA=OC,∠AOC =90° ∴∠OCA=∠OAC=45°. ∵∠ACP1=90°, ∴∠MCP1=90°-45°=45°=∠C P1M.
∴MC=MP1. 由(1)可得拋物線為.
設(shè),則, 解得:(舍去),.
∴. 則P1的坐標(biāo)是.
第二種情況,當(dāng)以A為直角頂點(diǎn)時(shí),過點(diǎn)A作AP2⊥AC,交拋物線于點(diǎn)P2,過點(diǎn)P2作y軸的垂線,垂足是N,AP2交y軸于點(diǎn)F. ∴P2N∥x軸.由∠CAO=45°, ∴∠OAP2=45°. ∴∠FP2N=45°,AO=OF=3.
∴P2N=NF. 設(shè),則. 解得:(舍去),.
∴, 則P2的坐標(biāo)是.
綜上所述,P的坐標(biāo)是或
(3)連接OD,由題意可知,四邊形OFDE是矩形,則OD=EF.
根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短. 由(1)可知,在Rt△AOC中,
∵OC=OA=3,OD⊥AC, ∴ D是AC的中點(diǎn). 又∵DF∥OC, ∴.
∴點(diǎn)P的縱坐標(biāo)是則, 解得:.
∴當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是的中點(diǎn),點(diǎn)P在AB的延長線上,且PC與⊙O相切于點(diǎn)C,過點(diǎn)C作CD⊥AB,垂足為D,CD 與BG交于E.
(1)求證:①PC//BG;②;
(2)若弧AG的度數(shù)為60°,且⊙O的半徑為2,試求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. a2+a4=a6B. 3(a-b)=3a-bC. (a2)4=a6D. a2-2a2=-a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(a+b)(a﹣b)+(a﹣b)2﹣(2a2﹣ab),其中a,b是一元二次方程x2+x﹣2=0的兩個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D是弧AB上一點(diǎn),C是弧AD的中點(diǎn),過點(diǎn)C作AB的垂線,交AB
于E,與過點(diǎn)D的切線交于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC,關(guān)于下列結(jié)論:①
∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心.其中正確結(jié)論是_______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵居民節(jié)約用水,某自來水公司采取分段計(jì)費(fèi),每月每戶用水不超過10噸,每噸2.2元;超過10噸的部分,每噸加收1.3元.小明家4月份用水15噸,應(yīng)交水費(fèi)元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com