如圖,PA、PB是⊙O的切線,切點分別是A、B,若∠APB=60°,PA=4.求⊙O的半徑.
連接OA、OP
∵PA、PB是⊙O的切線
∴∠OAP=90°,∠APO=
1
2
∠APB=30°
Rt△OAP中,
∵tan∠APO=
OA
PA

∴OA=PA•tan30°=
3
3
=
4
3
3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知正方形ABCD的邊長為2
3
,點M是AD的中點,P是線段MD上的一動點(P不與M,D重合),以AB為直徑作⊙O,過點P作⊙O的切線交BC于點F,切點為E.
(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線);
(2)求四邊形CDPF的周長;
(3)延長CD,F(xiàn)P相交于點G,如圖2所示.是否存在點P,使BF•FG=CF•OF?如果存在,試求此時AP的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為2的等邊三角形ABC中,以B為圓心,AB為半徑作
AC
,在扇形BAC內(nèi)作⊙O與AB、BC、
AC
都相切,則⊙O的周長等于(  )
A.
4
9
π
B.
2
3
π
C.
4
3
π
D.π

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,P為AB延長線上的一點,PC是⊙O的切線,C為切點,∠A=35°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD內(nèi)接于以BC為直徑的⊙O,且AB=AD,延長CB、DA,交于P點,CE與⊙O相切于點C,CE與PD的延長線交于點E.當PB=OC,CD=18時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若⊙O的半徑長是4cm,圓外一點A與⊙O上各點的最遠距離是12cm,則自A點所引⊙O的切線長為(  )
A.16cmB.4
3
cm
C.4
2
cm
D.4
6
cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=
1
2
∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=
5
5
,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角梯形ABCD中,ADBC,∠B=90°,BC=2AB=2AD=4.以AB為直徑作⊙O,點P在梯形內(nèi)的半圓弧上運動,則△CPD的最小面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC=10,BC=12,以A為圓心,分別以下列長為半徑作圓,請你判定⊙A與直線BC的位置關(guān)系.(1)6;(2)8;(3)12.

查看答案和解析>>

同步練習冊答案