已知:如圖,四邊形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四邊形ABCD的面積.

解:連接AC.
∵∠ABC=90°,AB=1,BC=2,
∴AC==,
在△ACD中,AC2+CD2=5+4=9=AD2,
∴△ACD是直角三角形,
∴S四邊形ABCD=AB•BC+AC•CD,
=×1×2+××2,
=1+
故四邊形ABCD的面積為1+
分析:先根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,再利用三角形的面積公式求解即可.
點評:本題考查的是勾股定理的逆定理及三角形的面積,能根據(jù)勾股定理的逆定理判斷出△ACD的形狀是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
試求:(1)AC的長;(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,四邊形ABCD內(nèi)接于⊙O,且AB∥CD,AD∥BC,
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,且BE=DF
(1)求證:CE=CF;
(2)求∠CEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四邊形ABCD繞直線AB旋轉(zhuǎn)一周,則所得幾何體的表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形ABCD及一點P.
求作:四邊形A′B′C′D′,使得它是由四邊形ABCD繞P點順時針旋轉(zhuǎn)150°得到的.

查看答案和解析>>

同步練習冊答案